forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
static_model.py
104 lines (88 loc) · 3.75 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from net import ESMMLayer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.max_len = self.config.get("hyper_parameters.max_len", 3)
self.sparse_feature_number = self.config.get(
"hyper_parameters.sparse_feature_number")
self.sparse_feature_dim = self.config.get(
"hyper_parameters.sparse_feature_dim")
self.num_field = self.config.get("hyper_parameters.num_field")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
self.ctr_fc_sizes = self.config.get("hyper_parameters.ctr_fc_sizes")
self.cvr_fc_sizes = self.config.get("hyper_parameters.cvr_fc_sizes")
def create_feeds(self, is_infer=False):
sparse_input_ids = [
paddle.static.data(
name="field_" + str(i),
shape=[None, self.max_len],
dtype="int64") for i in range(0, 23)
]
label_ctr = paddle.static.data(
name="ctr", shape=[None, 1], dtype="int64")
label_cvr = paddle.static.data(
name="cvr", shape=[None, 1], dtype="int64")
inputs = sparse_input_ids + [label_ctr] + [label_cvr]
if is_infer:
return inputs
else:
return inputs
def net(self, inputs, is_infer=False):
esmm_model = ESMMLayer(self.sparse_feature_number,
self.sparse_feature_dim, self.num_field,
self.ctr_fc_sizes, self.cvr_fc_sizes)
ctr_out, ctr_out_one, cvr_out, cvr_out_one, ctcvr_prop, ctcvr_prop_one = esmm_model.forward(
inputs[0:-2])
ctr_clk = inputs[-2]
ctcvr_buy = inputs[-1]
auc_ctr, batch_auc_ctr, auc_states_ctr = paddle.static.auc(
input=ctr_out, label=ctr_clk)
auc_ctcvr, batch_auc_ctcvr, auc_states_ctcvr = paddle.static.auc(
input=ctcvr_prop, label=ctcvr_buy)
if is_infer:
fetch_dict = {'auc_ctr': auc_ctr, 'auc_ctcvr': auc_ctcvr}
return fetch_dict
loss_ctr = paddle.nn.functional.log_loss(
input=ctr_out_one, label=paddle.cast(
ctr_clk, dtype="float32"))
loss_ctcvr = paddle.nn.functional.log_loss(
input=ctcvr_prop_one,
label=paddle.cast(
ctcvr_buy, dtype="float32"))
cost = loss_ctr + loss_ctcvr
avg_cost = paddle.mean(x=cost)
self._cost = avg_cost
fetch_dict = {
'cost': avg_cost,
'auc_ctr': auc_ctr,
'auc_ctcvr': auc_ctcvr
}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)