forked from chuangua/ContrastiveLossMLML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clml.py
214 lines (184 loc) · 8.69 KB
/
train_clml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torch.optim import lr_scheduler
from src.helper_functions.helper_functions import mAP, CocoDetection, COCO_missing_dataset, CutoutPIL, ModelEma, add_weight_decay
from src.models import create_model
from src.loss_functions.losses import AsymmetricLoss, Hill, SPLC
from randaugment import RandAugment
from torch.cuda.amp import GradScaler, autocast
from ConLoss_MLML import CLLoss,CLML
parser = argparse.ArgumentParser(description='PyTorch MS_COCO Training')
parser.add_argument('--dataset', help='select dataset', default='./dataset/coco_train_0.75left.txt')
parser.add_argument('--data', metavar='DIR', help='path to dataset', default='/home/mscoco')
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--model-name', default='resnet101')
parser.add_argument('--num-classes', default=80)
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',help='number of data loading workers (default: 16)')
parser.add_argument('--image-size', default=448, type=int, metavar='N', help='input image size (default: 448)')
parser.add_argument('--thre', default=0.5, type=float, metavar='N', help='threshold value')
parser.add_argument('-b', '--batch-size', default=16, type=int, metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--print-freq', '-p', default=64, type=int, metavar='N', help='print frequency (default: 64)')
parser.add_argument('--loss', default='SPLC', type=str, help='select loss function', choices=['BCE','Focal','Hill','SPLC'])
parser.add_argument('--lambda_', type=float, default=1.00, help='CL loss is multiplied by lambda_.')
parser.add_argument('--useclml', type=bool, default=True, help='use clml')
parser.add_argument('--threshold', type=float, default=0.75, help='If the predicted probability is greater than this value, the sample makes up the label')
def main():
args = parser.parse_args()
args.do_bottleneck_head = False
# Setup model
print('creating model...')
model = create_model(args).cuda()
print('done\n')
if torch.cuda.device_count() > 1:
device_id = range(torch.cuda.device_count())
model = nn.DataParallel(model, device_ids = device_id)
# COCO Data loading
instances_path_val = os.path.join(args.data, 'annotations/instances_val2014.json')
instances_path_train = args.dataset
data_path_val = f'{args.data}/val2014' # args.data
data_path_train = f'{args.data}/train2014' # args.data
val_dataset = CocoDetection(data_path_val,
instances_path_val,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
# normalize, # no need, toTensor does normalization
]))
train_dataset = COCO_missing_dataset(data_path_train,
instances_path_train,
transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
CutoutPIL(cutout_factor=0.5),
RandAugment(),
transforms.ToTensor(),
# normalize,
]),class_num=args.num_classes)
print("len(val_dataset)): ", len(val_dataset))
print("len(train_dataset)): ", len(train_dataset))
# Pytorch Data loader
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False)
# Actuall Training
train_multi_label_coco(args, model, train_loader, val_loader, args.lr)
def train_multi_label_coco(args, model, train_loader, val_loader, lr):
ema = ModelEma(model, 0.9997) # 0.9997^641=0.82
# set optimizer
Epochs = 80
Stop_epoch = 25
weight_decay = 1e-4
use_clml=args.useclml
lam=args.lambda_
if args.loss == 'BCE':
crit1 = AsymmetricLoss(gamma_neg=0, gamma_pos=0, clip=0)
elif args.loss == 'Focal':
crit1 = AsymmetricLoss(gamma_neg=2, gamma_pos=2, clip=0)
elif args.loss == 'Hill':
crit1 = Hill()
elif args.loss == 'SPLC':
crit1 = SPLC()
else:
raise ValueError("Loss function dose not exist.")
parameters = add_weight_decay(model, weight_decay)
optimizer = torch.optim.Adam(params=parameters, lr=lr, weight_decay=0) # true wd, filter_bias_and_bn
steps_per_epoch = len(train_loader)
scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr, steps_per_epoch=steps_per_epoch, epochs=Epochs,
pct_start=0.2)
highest_mAP = 0
trainInfoList = []
scaler = GradScaler()
crit_clml=CLML(tau=args.threshold)
for epoch in range(Epochs):
if epoch > Stop_epoch:
break
for batch_idx, (inputData, target ) in enumerate(train_loader):
inputData = inputData.cuda()
#target=target.to(torch.float32)
target = target.cuda() # (batch,3,num_classes)
output,feature = model(inputData)
loss=0
if args.loss == 'SPLC':
loss_classification=crit1(output,target,epoch)
else:
loss_classification=crit1(output,target)
if use_clml:
loss_clml=crit_clml(output, target, feature, epoch,lam)
else:
loss_clml=0
loss=loss_classification+loss_clml
model.zero_grad()
scaler.scale(loss).backward()
# loss.backward()
scaler.step(optimizer)
scaler.update()
# optimizer.step()
scheduler.step()
ema.update(model)
# store information
if batch_idx % 100 == 0:
trainInfoList.append([epoch, batch_idx, loss.item()])
print('Epoch [{}/{}], Step [{}/{}], LR {:.1e}, Loss: {:.1f}'
.format(epoch, Epochs, str(batch_idx).zfill(3), str(steps_per_epoch).zfill(3),
scheduler.get_last_lr()[0],loss.item()))
try:
torch.save(model.state_dict(), os.path.join(
'models/', 'model-{}-{}.ckpt'.format(epoch + 1, batch_idx + 1)))
except:
pass
model.eval()
mAP_score, if_ema_better = validate_multi(val_loader, model, ema)
model.train()
if mAP_score > highest_mAP:
highest_mAP = mAP_score
best_epoch = epoch
try:
if if_ema_better:
torch.save(ema.module.state_dict(), os.path.join(
'models/', 'model-highest.ckpt'))
else:
torch.save(model.state_dict(), os.path.join(
'models/', 'model-highest.ckpt'))
except:
print('store failed')
pass
print('current_mAP = {:.2f}, highest_mAP = {:.2f}, best_epoch={}\n'.format(mAP_score, highest_mAP, best_epoch))
def validate_multi(val_loader, model, ema_model):
print("starting validation")
Sig = torch.nn.Sigmoid()
preds_regular = []
preds_ema = []
targets = []
for i, (input, target) in enumerate(val_loader):
target = target
target = target.max(dim=1)[0]
# compute output
with torch.no_grad():
with autocast():
out_test,fea_test=model(input.cuda())
out_ema,fea_ema=ema_model.module(input.cuda())
output_regular = Sig(out_test).cpu()
output_ema = Sig(out_ema).cpu()
# for mAP calculation
preds_regular.append(output_regular.cpu().detach())
preds_ema.append(output_ema.cpu().detach())
targets.append(target.cpu().detach())
mAP_score_regular= mAP(torch.cat(targets).numpy(), torch.cat(preds_regular).numpy())
mAP_score_ema= mAP(torch.cat(targets).numpy(), torch.cat(preds_ema).numpy())
print("mAP score regular {:.2f}, mAP score EMA {:.2f}".format(mAP_score_regular, mAP_score_ema))
mAP_max = max(mAP_score_regular, mAP_score_ema)
if mAP_score_ema >= mAP_score_regular:
if_ema_better = True
else:
if_ema_better = False
return mAP_max, if_ema_better
if __name__ == '__main__':
main()