Skip to content

Latest commit

 

History

History
31 lines (23 loc) · 1.12 KB

README.md

File metadata and controls

31 lines (23 loc) · 1.12 KB

ContrastiveLossMLML

OSCS Status This repository contains the source code for the experiments of the article

"Label Structure Preserving Contrastive Embedding for Multi-Label Learning with Missing Labels" 
Zhongchen Ma†, Lisha Li†, Qirong Mao, Senior Member, IEEE, and Songcan Chen∗, Senior Member, IEEE
https://arxiv.org/abs/2209.01314

you can try:

$ python train_clml.py --dataset ./dataset/coco_train_0.75left.txt --data /home/mscoco --b 64 --loss BCE --lambda_ 1.00 --useclml True --threshold 0.8

and then start training:

creating model...
num_classes =  80
model use imagenet pretained!
done

loading annotations into memory...
Done (t=4.78s)
creating index...
index created!
load class_nums =  80
len(val_dataset)):  40137
len(train_dataset)):  82081
Epoch [0/80], Step [000/1283], LR 4.0e-06, Loss: 3719.9
Epoch [0/80], Step [100/1283], LR 4.0e-06, Loss: 2793.5
···