forked from marco-rudolph/differnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
31 lines (26 loc) · 1.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from model import load_model
from os import listdir
from os.path import join
from utils import get_random_transforms, get_fixed_transforms
from PIL import Image
import config as c
import torch
def get_anomaly_score(model, image_path, transforms):
img = Image.open(image_path).convert('RGB')
transformed_imgs = torch.stack([tf(img) for tf in transforms])
z = model(transformed_imgs)
anomaly_score = torch.mean(z ** 2)
print("image: %s, score: %.2f" % (image_path, anomaly_score))
return anomaly_score
def evaluate(model_name, image_folder, fixed_transforms=True):
model = load_model(model_name)
files = listdir(image_folder)
if fixed_transforms:
fixed_degrees = [i * 360.0 / c.n_transforms_test for i in range(c.n_transforms_test)]
transforms = [get_fixed_transforms(fd) for fd in fixed_degrees]
else:
transforms = [get_random_transforms()] * c.n_transforms_test
for f in files:
get_anomaly_score(model, join(image_folder, f), transforms)
image_folder = 'dummy_dataset/dummy_class/train/good'
evaluate(c.modelname, image_folder, fixed_transforms=True)