-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathChainCRF.py
389 lines (307 loc) · 14.4 KB
/
ChainCRF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
# -*- coding: utf-8 -*-
'''
Author: Philipp Gross @ https://github.com/phipleg/keras/blob/crf/keras/layers/crf.py
'''
from __future__ import absolute_import
import keras
from keras import backend as K
from keras import regularizers
from keras import constraints
from keras import initializers
from keras.engine import Layer, InputSpec
def path_energy(y, x, U, b_start=None, b_end=None, mask=None):
'''Calculates the energy of a tag path y for a given input x (with mask),
transition energies U and boundary energies b_start, b_end.'''
x = add_boundary_energy(x, b_start, b_end, mask)
return path_energy0(y, x, U, mask)
def path_energy0(y, x, U, mask=None):
'''Path energy without boundary potential handling.'''
n_classes = K.shape(x)[2]
y_one_hot = K.one_hot(y, n_classes)
# Tag path energy
energy = K.sum(x * y_one_hot, 2)
energy = K.sum(energy, 1)
# Transition energy
y_t = y[:, :-1]
y_tp1 = y[:, 1:]
U_flat = K.reshape(U, [-1])
# Convert 2-dim indices (y_t, y_tp1) of U to 1-dim indices of U_flat:
flat_indices = y_t * n_classes + y_tp1
U_y_t_tp1 = K.gather(U_flat, flat_indices)
if mask is not None:
mask = K.cast(mask, K.floatx())
y_t_mask = mask[:, :-1]
y_tp1_mask = mask[:, 1:]
U_y_t_tp1 *= y_t_mask * y_tp1_mask
energy += K.sum(U_y_t_tp1, axis=1)
return energy
def sparse_chain_crf_loss(y, x, U, b_start=None, b_end=None, mask=None):
'''Given the true sparsely encoded tag sequence y, input x (with mask),
transition energies U, boundary energies b_start and b_end, it computes
the loss function of a Linear Chain Conditional Random Field:
loss(y, x) = NNL(P(y|x)), where P(y|x) = exp(E(y, x)) / Z.
So, loss(y, x) = - E(y, x) + log(Z)
Here, E(y, x) is the tag path energy, and Z is the normalization constant.
The values log(Z) is also called free energy.
'''
x = add_boundary_energy(x, b_start, b_end, mask)
energy = path_energy0(y, x, U, mask)
energy -= free_energy0(x, U, mask)
return K.expand_dims(-energy, -1)
def chain_crf_loss(y, x, U, b_start=None, b_end=None, mask=None):
'''Variant of sparse_chain_crf_loss but with one-hot encoded tags y.'''
y_sparse = K.argmax(y, -1)
y_sparse = K.cast(y_sparse, 'int32')
return sparse_chain_crf_loss(y_sparse, x, U, b_start, b_end, mask)
def add_boundary_energy(x, b_start=None, b_end=None, mask=None):
'''Given the observations x, it adds the start boundary energy b_start (resp.
end boundary energy b_end on the start (resp. end) elements and multiplies
the mask.'''
if mask is None:
if b_start is not None:
x = K.concatenate([x[:, :1, :] + b_start, x[:, 1:, :]], axis=1)
if b_end is not None:
x = K.concatenate([x[:, :-1, :], x[:, -1:, :] + b_end], axis=1)
else:
mask = K.cast(mask, K.floatx())
mask = K.expand_dims(mask, 2)
x *= mask
if b_start is not None:
mask_r = K.concatenate([K.zeros_like(mask[:, :1]), mask[:, :-1]], axis=1)
start_mask = K.cast(K.greater(mask, mask_r), K.floatx())
x = x + start_mask * b_start
if b_end is not None:
mask_l = K.concatenate([mask[:, 1:], K.zeros_like(mask[:, -1:])], axis=1)
end_mask = K.cast(K.greater(mask, mask_l), K.floatx())
x = x + end_mask * b_end
return x
def viterbi_decode(x, U, b_start=None, b_end=None, mask=None):
'''Computes the best tag sequence y for a given input x, i.e. the one that
maximizes the value of path_energy.'''
x = add_boundary_energy(x, b_start, b_end, mask)
alpha_0 = x[:, 0, :]
gamma_0 = K.zeros_like(alpha_0)
initial_states = [gamma_0, alpha_0]
_, gamma = _forward(x,
lambda B: [K.cast(K.argmax(B, axis=1), K.floatx()), K.max(B, axis=1)],
initial_states,
U,
mask)
y = _backward(gamma, mask)
return y
def free_energy(x, U, b_start=None, b_end=None, mask=None):
'''Computes efficiently the sum of all path energies for input x, when
runs over all possible tag sequences.'''
x = add_boundary_energy(x, b_start, b_end, mask)
return free_energy0(x, U, mask)
def free_energy0(x, U, mask=None):
'''Free energy without boundary potential handling.'''
initial_states = [x[:, 0, :]]
last_alpha, _ = _forward(x,
lambda B: [K.logsumexp(B, axis=1)],
initial_states,
U,
mask)
return last_alpha[:, 0]
def _forward(x, reduce_step, initial_states, U, mask=None):
'''Forward recurrence of the linear chain crf.'''
def _forward_step(energy_matrix_t, states):
alpha_tm1 = states[-1]
new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)
return new_states[0], new_states
U_shared = K.expand_dims(K.expand_dims(U, 0), 0)
if mask is not None:
mask = K.cast(mask, K.floatx())
mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)
U_shared = U_shared * mask_U
inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared
inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)
last, values, _ = K.rnn(_forward_step, inputs, initial_states)
return last, values
def batch_gather(reference, indices):
ref_shape = K.shape(reference)
batch_size = ref_shape[0]
n_classes = ref_shape[1]
flat_indices = K.arange(0, batch_size) * n_classes + K.flatten(indices)
return K.gather(K.flatten(reference), flat_indices)
def _backward(gamma, mask):
'''Backward recurrence of the linear chain crf.'''
gamma = K.cast(gamma, 'int32')
def _backward_step(gamma_t, states):
y_tm1 = K.squeeze(states[0], 0)
y_t = batch_gather(gamma_t, y_tm1)
return y_t, [K.expand_dims(y_t, 0)]
initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]
_, y_rev, _ = K.rnn(_backward_step,
gamma,
initial_states,
go_backwards=True)
y = K.reverse(y_rev, 1)
if mask is not None:
mask = K.cast(mask, dtype='int32')
# mask output
y *= mask
# set masked values to -1
y += -(1 - mask)
return y
class ChainCRF(Layer):
'''A Linear Chain Conditional Random Field output layer.
It carries the loss function and its weights for computing
the global tag sequence scores. While training it acts as
the identity function that passes the inputs to the subsequently
used loss function. While testing it applies Viterbi decoding
and returns the best scoring tag sequence as one-hot encoded vectors.
# Arguments
init: weight initialization function for chain energies U.
Can be the name of an existing function (str),
or a Theano function (see: [initializers](../initializers.md)).
U_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the transition weight matrix.
b_start_regularizer: instance of [WeightRegularizer](../regularizers.md),
applied to the start bias b.
b_end_regularizer: instance of [WeightRegularizer](../regularizers.md)
module, applied to the end bias b.
b_start_constraint: instance of the [constraints](../constraints.md)
module, applied to the start bias b.
b_end_constraint: instance of the [constraints](../constraints.md)
module, applied to the end bias b.
weights: list of Numpy arrays for initializing [U, b_start, b_end].
Thus it should be a list of 3 elements of shape
[(n_classes, n_classes), (n_classes, ), (n_classes, )]
# Input shape
3D tensor with shape `(nb_samples, timesteps, nb_classes)`, where
´timesteps >= 2`and `nb_classes >= 2`.
# Output shape
Same shape as input.
# Masking
This layer supports masking for input sequences of variable length.
# Example
```python
# As the last layer of sequential layer with
# model.output_shape == (None, timesteps, nb_classes)
crf = ChainCRF()
model.add(crf)
# now: model.output_shape == (None, timesteps, nb_classes)
# Compile model with chain crf loss (and one-hot encoded labels) and accuracy
model.compile(loss=crf.loss, optimizer='sgd', metrics=['accuracy'])
# Alternatively, compile model with sparsely encoded labels and sparse accuracy:
model.compile(loss=crf.sparse_loss, optimizer='sgd', metrics=['sparse_categorical_accuracy'])
```
# Gotchas
## Model loading
When you want to load a saved model that has a crf output, then loading
the model with 'keras.models.load_model' won't work properly because
the reference of the loss function to the transition parameters is lost. To
fix this, you need to use the parameter 'custom_objects' as follows:
```python
from keras.layer.crf import create_custom_objects:
model = keras.models.load_model(filename, custom_objects=create_custom_objects())
```
## Temporal sample weights
Given a ChainCRF instance crf both loss functions, crf.loss and crf.sparse_loss
return a tensor of shape (batch_size, 1) and not (batch_size, maxlen).
that sample weighting in temporal mode.
'''
def __init__(self, init='glorot_uniform',
U_regularizer=None,
b_start_regularizer=None,
b_end_regularizer=None,
U_constraint=None,
b_start_constraint=None,
b_end_constraint=None,
weights=None,
**kwargs):
super(ChainCRF, self).__init__(**kwargs)
self.init = initializers.get(init)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_start_regularizer = regularizers.get(b_start_regularizer)
self.b_end_regularizer = regularizers.get(b_end_regularizer)
self.U_constraint = constraints.get(U_constraint)
self.b_start_constraint = constraints.get(b_start_constraint)
self.b_end_constraint = constraints.get(b_end_constraint)
self.initial_weights = weights
self.supports_masking = True
self.uses_learning_phase = True
self.input_spec = [InputSpec(ndim=3)]
def compute_output_shape(self, input_shape):
assert input_shape and len(input_shape) == 3
return (input_shape[0], input_shape[1], input_shape[2])
def compute_mask(self, input, mask=None):
if mask is not None:
return K.any(mask, axis=1)
return mask
def _fetch_mask(self):
mask = None
if self._inbound_nodes:
mask = self._inbound_nodes[0].input_masks[0]
return mask
def build(self, input_shape):
assert len(input_shape) == 3
n_classes = input_shape[2]
n_steps = input_shape[1]
assert n_steps is None or n_steps >= 2
self.input_spec = [InputSpec(dtype=K.floatx(),
shape=(None, n_steps, n_classes))]
self.U = self.add_weight((n_classes, n_classes),
initializer=self.init,
name='U',
regularizer=self.U_regularizer,
constraint=self.U_constraint)
self.b_start = self.add_weight((n_classes, ),
initializer='zero',
name='b_start',
regularizer=self.b_start_regularizer,
constraint=self.b_start_constraint)
self.b_end = self.add_weight((n_classes, ),
initializer='zero',
name='b_end',
regularizer=self.b_end_regularizer,
constraint=self.b_end_constraint)
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
def call(self, x, mask=None):
y_pred = viterbi_decode(x, self.U, self.b_start, self.b_end, mask)
nb_classes = self.input_spec[0].shape[2]
y_pred_one_hot = K.one_hot(y_pred, nb_classes)
return K.in_train_phase(x, y_pred_one_hot)
def loss(self, y_true, y_pred):
'''Linear Chain Conditional Random Field loss function.
'''
mask = self._fetch_mask()
return chain_crf_loss(y_true, y_pred, self.U, self.b_start, self.b_end, mask)
def sparse_loss(self, y_true, y_pred):
'''Linear Chain Conditional Random Field loss function with sparse
tag sequences.
'''
y_true = K.cast(y_true, 'int32')
y_true = K.squeeze(y_true, 2)
mask = self._fetch_mask()
return sparse_chain_crf_loss(y_true, y_pred, self.U, self.b_start, self.b_end, mask)
def get_config(self):
config = {
'init': initializers.serialize(self.init),
'U_regularizer': regularizers.serialize(self.U_regularizer),
'b_start_regularizer': regularizers.serialize(self.b_start_regularizer),
'b_end_regularizer': regularizers.serialize(self.b_end_regularizer),
'U_constraint': constraints.serialize(self.U_constraint),
'b_start_constraint': constraints.serialize(self.b_start_constraint),
'b_end_constraint': constraints.serialize(self.b_end_constraint)
}
base_config = super(ChainCRF, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def create_custom_objects():
'''Returns the custom objects, needed for loading a persisted model.'''
instanceHolder = {'instance': None}
class ChainCRFClassWrapper(ChainCRF):
def __init__(self, *args, **kwargs):
instanceHolder['instance'] = self
super(ChainCRFClassWrapper, self).__init__(*args, **kwargs)
def loss(*args):
method = getattr(instanceHolder['instance'], 'loss')
return method(*args)
def sparse_loss(*args):
method = getattr(instanceHolder['instance'], 'sparse_loss')
return method(*args)
return {'ChainCRF': ChainCRFClassWrapper, 'ChainCRFClassWrapper': ChainCRFClassWrapper, 'loss': loss, 'sparse_loss': sparse_loss}