forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgpt_benchmark.py
332 lines (303 loc) · 15.5 KB
/
gpt_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from dataclasses import asdict
from math import ceil
import torch
import tensorrt_llm
from tensorrt_llm.profiler import bytes_to_target_unit
from allowed_configs import get_build_config, BuildConfig # isort:skip
from base_benchmark import BaseBenchmark # isort:skip
from build import build_gpt, get_quant_mode # isort:skip
def element_size(dtype: str):
str_to_size_in_bytes = dict(float16=2,
float32=4,
int64=8,
int32=4,
int8=1,
bool=1,
bfloat16=2,
fp8=1)
return str_to_size_in_bytes[dtype]
class GPTBenchmark(BaseBenchmark):
def __init__(self, args, batch_sizes, in_out_lens, rank, world_size):
super().__init__(args.engine_dir, args.model, args.dtype, rank,
world_size, args.serial_build)
self.batch_sizes = batch_sizes
self.in_out_lens = in_out_lens
self.num_beams = args.num_beams
self.mode = args.mode
self.build_time = 0
self.cuda_graph_mode = args.enable_cuda_graph
self.build_config = None
# this dtype may be modified based on quantization mode later, when the fp8/int8 kv cache is used
self.kv_dtype = args.dtype
# approximate the weights size in the engine by using engine size
# the actual weights size shall be smaller because there are some other data in the engine file.
# for large model, this approximate is close enough.
self.weights_size_approx = 0
if args.engine_dir is not None:
# Get build configs from engine directory is done in base class
# Deserialize engine from engine directory
self.serialize_path = os.path.join(args.engine_dir,
self.engine_name)
with open(self.serialize_path, 'rb') as f:
engine_buffer = f.read()
self.weights_size_approx = len(engine_buffer)
else:
self.build_config = get_build_config(args.model, return_dict=False)
for key, value in asdict(self.build_config).items():
setattr(self, key, value)
if args.force_num_layer_1:
self.num_layers = 1
if args.max_batch_size is not None:
self.max_batch_size = args.max_batch_size
if args.max_input_len is not None:
self.max_input_len = args.max_input_len
if args.max_output_len is not None:
self.max_output_len = args.max_output_len
self.quant_mode, _, _ = get_quant_mode(args.quantization)
self.enable_fp8 = self.quant_mode.has_fp8_qdq()
self.fp8_kv_cache = self.quant_mode.has_fp8_kv_cache()
if self.quant_mode.has_fp8_kv_cache():
self.kv_dtype = 'fp8'
if self.quant_mode.has_int8_kv_cache():
self.kv_dtype = 'int8'
# Plugins
self.use_gpt_attention_plugin = False
self.remove_input_padding = False
if args.mode == 'plugin':
self.use_gpt_attention_plugin = True
self.remove_input_padding = True
elif args.mode == 'ootb-except-mha':
self.use_gpt_attention_plugin = True
engine_buffer, build_time = build_gpt(args)
self.weights_size_approx = engine_buffer.nbytes
self.build_time = build_time
assert engine_buffer is not None
if args.build_only:
return
if not hasattr(self, 'num_kv_heads') or self.num_kv_heads is None:
self.num_kv_heads = self.num_heads
model_config = tensorrt_llm.runtime.ModelConfig(
max_batch_size=self.max_batch_size,
vocab_size=self.vocab_size,
num_layers=self.num_layers,
num_heads=self.num_heads // self.world_size,
num_kv_heads=ceil(self.num_kv_heads / self.world_size),
hidden_size=self.hidden_size // self.world_size,
gpt_attention_plugin=self.use_gpt_attention_plugin,
remove_input_padding=self.remove_input_padding,
quant_mode=self.quant_mode,
use_custom_all_reduce=self.use_custom_all_reduce,
)
if args.model == 'chatglm_6b':
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=130005,
pad_id=3,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.ChatGLMGenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif args.model in ['chatglm2_6b', 'chatglm3_6b']:
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=2,
pad_id=0,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config, engine_buffer, self.runtime_mapping)
elif 'mamba' in args.model:
model_config.mamba_d_state = self.mamba_d_state
model_config.mamba_d_conv = self.mamba_d_conv
model_config.mamba_expand = self.mamba_expand
self.remove_input_padding = False
model_config.remove_input_padding = False
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=0, pad_id=0, top_k=args.top_k, top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.MambaLMHeadModelGenerationSession(
model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
else:
end_id = 50256
pad_id = 50256
if "llama" in args.model:
end_id = 2
pad_id = 0
self.sampling_config = tensorrt_llm.runtime.SamplingConfig(
end_id=end_id,
pad_id=pad_id,
num_beams=self.num_beams,
top_k=args.top_k,
top_p=args.top_p)
self.decoder = tensorrt_llm.runtime.GenerationSession(
model_config,
engine_buffer,
self.runtime_mapping,
cuda_graph_mode=self.cuda_graph_mode)
def get_config(self):
for inlen, outlen in self.in_out_lens:
if inlen > self.max_input_len or outlen > self.max_output_len:
print(
f'[WARNING] check inlen({inlen}) <= max_inlen({self.max_input_len}) and '
f'outlen({outlen}) <= max_outlen({self.max_output_len}) failed, skipping.'
)
continue
for batch_size in self.batch_sizes:
if batch_size > self.max_batch_size:
print(
f'[WARNING] check batch_size({batch_size}) '
f'<= max_batch_size({self.max_batch_size}) failed, skipping.'
)
continue
yield (batch_size, inlen, outlen)
def prepare_inputs(self, config):
batch_size, inlen, outlen = config[0], config[1], config[2]
input_ids = torch.randint(100, (batch_size, inlen)).int().cuda()
input_lengths = torch.tensor([inlen
for _ in range(batch_size)]).int().cuda()
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
return (input_ids, input_lengths)
def get_report_dict(self, benchmark_profiler=None):
report_dict = super().get_report_dict(
benchmark_profiler=benchmark_profiler)
if benchmark_profiler is not None:
report_dict["generation_time(ms)"] = None
report_dict["total_generated_tokens"] = None
report_dict["generation_tokens_per_second"] = None
return report_dict
def run(self, inputs, config, benchmark_profiler=None):
batch_size, inlen, outlen = config[0], config[1], config[2]
self.decoder.setup(batch_size, inlen, outlen, beam_width=self.num_beams)
if self.remove_input_padding:
self.decoder.decode_batch(inputs[0],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
else:
self.decoder.decode(inputs[0],
inputs[1],
self.sampling_config,
benchmark_profiler=benchmark_profiler)
torch.cuda.synchronize()
@staticmethod
def kv_cache_elem_per_token(config: BuildConfig, tp_size, pp_size) -> int:
# you need to multiply the size by element size, and multiply by the seq length
# Warning: this function returns the upper bound between different ranks when any one of the following is true:
# num_layer % pp_size !=0, hidden_size % num_kv_heads != 0, num_kv_heads % tp_size != 0
local_nlayers = ceil(config.num_layers / pp_size)
kv_heads = config.num_kv_heads if config.num_kv_heads is not None else config.num_heads
size_per_head = ceil(config.hidden_size / kv_heads)
local_heads = ceil(kv_heads / tp_size)
return 2 * local_nlayers * size_per_head * local_heads
def check_memory(self, io_shapes: list, raise_exception=False):
'''Compare the estimated GPU memory requirements for weights + activations + kv cache with the total GPU memory and log it.
Raise exception when the \p raise_exception parameter is true.
'''
# we don't want to block the test due to this
if self.build_config is None:
tensorrt_llm.logger.warning(
"Didn't have the build config object, skipping check the memory"
)
return
assert isinstance(self.build_config, BuildConfig)
batch_size, inlen, outlen = io_shapes[0], io_shapes[1], io_shapes[2]
kv_cache_size_in_bytes = batch_size*self.num_beams*(inlen + outlen)* \
self.kv_cache_elem_per_token(self.build_config, self.runtime_mapping.tp_size, self.runtime_mapping.pp_size) * element_size(self.kv_dtype)
# when MHA is OOTB, it requires 2x KV cache size, one for past as engine input, one for present as engine output
if not self.use_gpt_attention_plugin:
kv_cache_size_in_bytes *= 2
kv_cache_size_in_mb = bytes_to_target_unit(kv_cache_size_in_bytes,
"MiB")
activation_size_in_mb = bytes_to_target_unit(
self.decoder.runtime.engine.device_memory_size, "MiB")
weights_size_in_mb = bytes_to_target_unit(self.weights_size_approx,
"MiB")
total_memory_approx_in_mb = kv_cache_size_in_mb + activation_size_in_mb + weights_size_in_mb
_, _, total = tensorrt_llm.profiler.device_memory_info()
total_in_mb = bytes_to_target_unit(total, 'MiB')
prefix = "[Memory Estimation]"
mem_msg = f"{prefix} activation memory:{activation_size_in_mb:.3f} MiB, kv_cache:{kv_cache_size_in_mb:.3f} MiB, weights approximate:{weights_size_in_mb:.3f} MiB, " \
f"approximate required GPU memory: {total_memory_approx_in_mb:.3f} MiB, total GPU memory: {total_in_mb:.3f} MiB"
tensorrt_llm.logger.info(mem_msg)
build_args = dict(batch_size=batch_size,
num_beams=self.num_beams,
input_length=inlen,
output_length=outlen,
max_batch_size=self.build_config.max_batch_size,
max_input_len=self.build_config.max_input_len,
max_output_len=self.build_config.max_output_len,
max_beam_width=self.build_config.max_beam_width)
for k, v in build_args.items():
tensorrt_llm.logger.info(f"{prefix} {k}:{v}")
tensorrt_llm.logger.info(
"grep the \"Total Activation\" and \"Total Weights\" from verbose TRT engine build log to see the precise memory size for those."
)
if raise_exception and total_memory_approx_in_mb >= total_in_mb:
raise Exception(
"Total memory estimation bigger than total gpu memory, the case will likely to OOM, needs enhancement of waive the test case, see logs about the memory usage details"
)
def report(self,
config,
latency,
percentile95,
percentile99,
peak_gpu_used,
csv,
benchmark_profiler=None):
report_dict = super().get_report_dict()
batch_size, inlen, outlen = config[0], config[1], config[2]
tokens_per_sec = round(batch_size * outlen / (latency / 1000), 2)
report_dict["num_heads"] = self.num_heads
report_dict["num_kv_heads"] = self.num_kv_heads
report_dict["num_layers"] = self.num_layers
report_dict["hidden_size"] = self.hidden_size
report_dict["vocab_size"] = self.vocab_size
report_dict["batch_size"] = batch_size
report_dict["input_length"] = inlen
report_dict["output_length"] = outlen
report_dict["latency(ms)"] = latency
report_dict["build_time(s)"] = self.build_time
report_dict["tokens_per_sec"] = tokens_per_sec
report_dict["percentile95(ms)"] = percentile95
report_dict["percentile99(ms)"] = percentile99
report_dict["gpu_peak_mem(gb)"] = peak_gpu_used
if benchmark_profiler is not None:
iter_count = benchmark_profiler.get_aux_info('iter_count')
generation_time_ms = benchmark_profiler.get_timer_value(
'generation_time')
generation_step_count = benchmark_profiler.get_aux_info(
'generation_step_count')
token_per_step = batch_size * self.num_beams
total_tokens = generation_step_count * token_per_step
report_dict["generation_time(ms)"] = round(
generation_time_ms / iter_count, 3)
report_dict["total_generated_tokens"] = total_tokens / iter_count
tokens_per_second = round(
total_tokens * 1000.0 / generation_time_ms, 3)
report_dict["generation_tokens_per_second"] = tokens_per_second
if self.runtime_rank == 0:
if csv:
line = ",".join([str(v) for v in report_dict.values()])
print(line)
with open(self.get_csv_filename(), "a") as file:
file.write(line + "\n")
else:
kv_pairs = [f"{k} {v}" for k, v in report_dict.items()]
line = '[BENCHMARK] ' + " ".join(kv_pairs)
print(line)