-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path02_spectral_clustering.py
529 lines (421 loc) · 15 KB
/
02_spectral_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import warnings
from tqdm import tqdm
import bioframe
import numpy as np
import pandas as pd
def _extract_eigs(eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs=False, filter_nans=True):
eigvecs = eigvecs.copy()
# Decide whether to use unit normed vectors or to weight them by sqrt(|lambda_i|)
if weight_by_eigval:
eigvecs.loc[:, 'E0':'E128'] *= np.sqrt(np.abs(eigvals.T.values))
# Do the k-clustering on top k eigenvectors, unless overriden to use more or fewer
if n_components is None:
n_components = n_clusters
if not positive_eigs:
# Decide whether to use E0 or not
if keep_first:
elo, ehi = 'E0', f'E{n_components - 1}'
else:
elo, ehi = 'E1', f'E{n_components}'
X = eigvecs.loc[:, elo:ehi].values
else:
if not keep_first:
eigvals = eigvals.drop('E0')
which = eigvals.loc[eigvals['val'] > 0].index[:n_components]
X = eigvecs.loc[:, which].values
if not filter_nans:
return X
mask = np.all(~np.isnan(X), axis=1)
x = X[mask, :]
return x, mask
def kmeans_sm(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Shi and Malik (2000)
* Use the eigenvectors of L_rw (this doesn't matter for us).
* NO row normalization before clustering.
Notes
-----
This is what sklearn spectral_clustering does on the eigenvectors of the
normalized laplacian (when using the k-means method).
Sklearn's implementation does not unit norm the input vectors as some do.
"""
from sklearn.cluster import KMeans
model = KMeans(
n_clusters=n_clusters,
init='k-means++',
n_init=100,
max_iter=10000,
tol=0.00001,
precompute_distances='auto',
verbose=0,
random_state=42,
copy_x=True,
n_jobs=32,
algorithm='auto',
)
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
labels = np.full(len(mask), n_clusters)
labels[mask] = model.fit_predict(x)
return labels
def gaussian_mixture_sm(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Extends the Shi and Malik method to a GMM with no covariance constraints.
* Use the eigenvectors of L_rw (this doesn't matter for us).
* NO row normalization before clustering.
"""
# https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/mixture/_gaussian_mixture.py
from sklearn.mixture import GaussianMixture
model = GaussianMixture(
n_components=n_clusters,
covariance_type='full',
tol=0.001,
reg_covar=1e-06,
n_init=100,
max_iter=1000,
init_params='kmeans',
random_state=42,
verbose=0
)
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
labels = np.full(len(mask), n_clusters)
labels[mask] = model.fit_predict(x)
if not model.converged_:
warnings.warn(f"GMM did not converge for k={n_clusters}")
return labels
def kmeans_njw(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Ng, Jordan and Weiss (2002)
* Use the eigenvectors of L_sym (this doesn't matter for us).
* Normalize the rows to norm 1.
"""
from sklearn.cluster import KMeans
model = KMeans(
n_clusters=n_clusters,
init='k-means++',
n_init=100,
max_iter=10000,
tol=0.00001,
verbose=0,
random_state=42,
n_jobs=32,
algorithm='auto',
)
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
# Normalize rows to norm 1
y = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
labels = np.full(len(mask), n_clusters)
labels[mask] = model.fit_predict(y)
return labels
def gaussian_mixture_njw(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Extends the Shi and Malik method to a GMM with no covariance constraints.
* Use the eigenvectors of L_rw (this doesn't matter for us).
* Normalize the rows to norm 1.
"""
# https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/mixture/_gaussian_mixture.py
from sklearn.mixture import GaussianMixture
model = GaussianMixture(
n_components=n_clusters,
covariance_type='full',
tol=0.001,
reg_covar=1e-06,
n_init=100,
max_iter=1000,
init_params='kmeans',
random_state=42,
verbose=0
)
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
# Normalize rows to norm 1
y = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
labels = np.full(len(mask), n_clusters)
labels[mask] = model.fit_predict(y)
if not model.converged_:
warnings.warn(f"GMM did not converge for k={n_clusters}")
return labels
def discretize_ys(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Yu and Shi (2003)
* Use the unit-norm eigenvectors of L_rw (this doesn't matter for us).
* Normalize the rows to norm 1.
* Find the closest discrete partition matrix (one-hot rows) to X (minimize Ncut loss)
Notes
-----
This is what sklearn's spectral_clustering uses with assign_labels='discretize'.
`weight_by_eigval` won't work because `discretize` internally renormalizes
the eigenvectors to norm 1.
References
----------
https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
"""
# https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/cluster/_spectral.py#L23
from sklearn.cluster._spectral import discretize
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
labels = np.full(len(mask), n_clusters)
# Sklearn does the row normalization and initial orientation of eigs
labels[mask] = discretize(x, random_state=42)
return labels
def spherical_kmeans(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Project points onto the unit hypersphere and cluster.
* Use the unit-norm eigenvectors of L_rw or L_sym (doesn't matter for us).
* Normalize the *rows* to norm 1 to project points onto the surface of the unit hypersphere.
(technically, spherical k-means should do the projection anyway)
* Do spherical k-means
Notes
-----
https://stackoverflow.com/a/38900937
"""
# https://github.com/jasonlaska/spherecluster
from spherecluster import SphericalKMeans
model = SphericalKMeans(
n_clusters=n_clusters,
init='k-means++',
n_init=100,
max_iter=10000,
tol=0.00001,
verbose=0,
random_state=42,
n_jobs=32,
)
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
# Normalize rows to norm 1
y = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
labels = np.full(len(mask), n_clusters)
labels[mask] = model.fit_predict(y)
return labels
def vonmises_mixture(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Extend the spherical kmeans method to a von Mises-Fisher (gaussian on a sphere) MM.
* Use the unit-norm eigenvectors of L_rw or L_sym (doesn't matter for us).
* Normalize the *rows* to norm 1 to project points onto the surface of the unit hypersphere.
(technically, spherical k-means should do the projection anyway)
* Do the mixture fitting
Notes
-----
Unlike the regular gaussian mixture, the distributions in this model are isotropic.
"""
from spherecluster import VonMisesFisherMixture
model = VonMisesFisherMixture(
n_clusters=n_clusters,
posterior_type="soft",
n_init=100,
max_iter=1000,
init="random-class",
random_state=42,
tol=1e-6,
normalize=True,
verbose=False,
n_jobs=32,
)
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
# Normalize rows to norm 1
y = x / np.linalg.norm(x, axis=1)[:, np.newaxis]
labels = np.full(len(mask), n_clusters)
labels[mask] = model.fit_predict(y)
# posterior = model.posterior_ # [n_clusters, n_examples]
return labels
def gaussian_hmm(eigvals, eigvecs, n_clusters, n_components=None, weight_by_eigval=False, keep_first=True, positive_eigs=False):
"""
Model the rows (points) as an HMM on k different latent k-dimensional
Gaussian states.
"""
from hmmlearn.hmm import GaussianHMM
from sklearn.cluster import KMeans
x, mask = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, positive_eigs
)
NULL = -100
kmeans = KMeans(
n_clusters=n_clusters,
init='k-means++',
n_init=100,
max_iter=10000,
tol=0.00001,
precompute_distances='auto',
verbose=0,
random_state=42,
copy_x=True,
n_jobs=32,
algorithm='auto',
)
kmeans.fit(x)
means_init = kmeans.cluster_centers_.tolist()
means_init.append([NULL] * n_components)
means_init = np.array(means_init)
X = _extract_eigs(
eigvals, eigvecs, n_clusters, n_components, weight_by_eigval, keep_first, filter_nans=False, positive_eigs=positive_eigs
)
X[np.isnan(X)] = NULL
hmm = GaussianHMM(
n_components=n_clusters + 1, # add 1 explicit NULL state
covariance_type='full',
min_covar=0.0001,
n_iter=100,
random_state=42,
init_params='stc',
)
hmm.means_ = means_init
hmm.fit(X)
Y = hmm.predict(X)
key = -hmm.means_.min(axis=1)
relabel = dict(zip(
range(n_clusters + 1),
np.argsort(key)
))
labels = np.array([relabel[y] for y in Y])
return labels
def relabel_clusters(labels, n_clusters, sorting_tracks, sort_key):
"""
Re-order the bins and re-label the cluster IDs based on a set of
sorting tracks.
1. User-defined sorting key.
2. Absolute distance from centromere.
3. Length of corresponding chromosome arm.
"""
# Assign the cluster IDs and extra data to temporary dataframe
df = sorting_tracks[['chrom', 'start', 'end', sort_key, 'centel', 'armlen']].copy()
df['centel_abs'] = df['centel'] * df['armlen']
df['cluster'] = labels
# Relabel the clusters using median of sorting column
df.loc[df['cluster'] == n_clusters, sort_key] = np.inf
clusters_ordered = (
df
.groupby('cluster')
[sort_key]
.median()
.sort_values()
.index
.tolist()
)
cluster_dtype = pd.CategoricalDtype(clusters_ordered, ordered=True)
df['cluster_relabeled'] = df['cluster'].astype(cluster_dtype).cat.codes
# Reorder the bins for plotting
bin_ranks = (
df
.sort_values(
['cluster_relabeled', 'centel_abs'],
ascending={'label': True, 'centel_abs': True}
)
.index
.values
)
return df['cluster_relabeled'].values, bin_ranks
METHODS = {
'kmeans_sm': kmeans_sm,
# 'kmeans_njw': kmeans_njw,
# 'discretize': discretize_ys,
# 'gmm_sm': gaussian_mixture_sm,
# 'gmm_njw': gaussian_mixture_njw,
# 'spkmeans': spherical_kmeans,
# 'vmm': vonmises_mixture,
# 'ghmm': gaussian_hmm,
}
CONDITIONS = [
"HCT116_Unsynchronized",
"HCT116_Unsynchronized_Auxin360mins",
"HCT116_5Aza",
"HCT116_DKO",
"H1ESC_FA-DSG-MNase",
"HFFc6_FA-DSG-MNase",
"GM12878_inSitu_MboI",
"IMR90_inSitu_MboI",
"K562_inSitu_MboI",
]
SORT_KEYS = {
"HCT116_5Aza": 'HCT116_protect',
"HCT116_DKO": 'HCT116_protect',
"HCT116_Unsynchronized": 'HCT116_protect',
"HCT116_Unsynchronized_Auxin360mins": 'HCT116_protect',
"H1ESC_FA-DSG-MNase": 'H1_wgbs',
"HFFc6_FA-DSG-MNase": 'HFFc6_atac',
"GM12878_inSitu_MboI": 'GM12878_wgbs',
"IMR90_inSitu_MboI": 'IMR90_wgbs',
"K562_inSitu_MboI": 'K562_wgbs',
}
BINSIZE = 50000
CHROMSIZES = bioframe.fetch_chromsizes('hg38')
CHROMOSOMES = list(CHROMSIZES[:'chr22'].index) # Don't use X or Y
N_CLUSTERS = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 32, 64]
keep_first = False
weight_by_eigval = True
positive_eigs = False
for cond in CONDITIONS:
print(cond)
eigvecs = pd.read_parquet(
f'results/{cond}.hg38.{BINSIZE}.E0-E128.trans.eigvecs.pq'
)
eigvals = pd.read_parquet(
f'results/{cond}.hg38.{BINSIZE}.E0-E128.trans.eigvals.pq',
).set_index('eig')
eigvecs = eigvecs[eigvecs['chrom'].isin(CHROMOSOMES)]
N_COMPONENTS = np.where(eigvals < 0)[0][0] - 1
sorting_tracks = pd.read_table(f'downloads/hg38.sorting_tracks.{BINSIZE}.tsv')
sorting_tracks = sorting_tracks[sorting_tracks['chrom'].isin(CHROMOSOMES)]
sort_key = SORT_KEYS[cond]
out = eigvecs[['chrom', 'start', 'end']].copy()
progbar = tqdm(METHODS)
for method in progbar:
for n_clusters in N_CLUSTERS:
progbar.set_description("Running: {}; k = {}".format(method, n_clusters))
if N_COMPONENTS is None:
n_components = n_clusters
else:
n_components = N_COMPONENTS
colname = f'{method}{n_clusters}'
labels = METHODS[method](
eigvals,
eigvecs,
n_clusters,
n_components,
weight_by_eigval,
keep_first,
positive_eigs,
)
new_labels, bin_ranks = relabel_clusters(
labels, n_clusters, sorting_tracks, sort_key
)
out[colname] = new_labels
out[colname + '_order'] = bin_ranks
if not positive_eigs:
if keep_first:
elo = 'E0'
if N_COMPONENTS:
ehi = f'E{N_COMPONENTS - 1}'
else:
ehi = 'Ek-1'
else:
elo = 'E1'
if N_COMPONENTS:
ehi = f'E{N_COMPONENTS}'
else:
ehi = 'Ek'
which = f"{elo}-{ehi}"
else:
if N_COMPONENTS is None:
which = f"positivek"
else:
which = f"positive{N_COMPONENTS}"
if weight_by_eigval:
eignorm = 'eignorm_sqrt'
else:
eignorm = 'eignorm_unity'
out.to_csv(
f'results/{cond}.hg38.{BINSIZE}.clusters.{which}.{eignorm}.tsv',
sep='\t',
index=False
)