forked from yearing1017/Deeplabv3_plus_PyTorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aspp.py
95 lines (81 loc) · 3.5 KB
/
aspp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from backbone.batchnorm import SynchronizedBatchNorm2d
class _ASPPModule(nn.Module):
def __init__(self, inplanes, planes, kernel_size, padding, dilation, BatchNorm):
super(_ASPPModule, self).__init__()
self.atrous_conv = nn.Conv2d(inplanes, planes, kernel_size=kernel_size,
stride=1, padding=padding, dilation=dilation, bias=False)
self.bn = BatchNorm(planes)
self.relu = nn.ReLU()
self._init_weight()
def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)
return self.relu(x)
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class ASPP(nn.Module):
def __init__(self, backbone, output_stride, BatchNorm):
super(ASPP, self).__init__()
if backbone == 'drn':
inplanes = 512
elif backbone == 'mobilenet':
inplanes = 320
else:
inplanes = 2048
if output_stride == 16:
dilations = [1, 6, 12, 18]
elif output_stride == 8:
dilations = [1, 12, 24, 36]
else:
raise NotImplementedError
self.aspp1 = _ASPPModule(inplanes, 256, 1, padding=0, dilation=dilations[0], BatchNorm=BatchNorm)
self.aspp2 = _ASPPModule(inplanes, 256, 3, padding=dilations[1], dilation=dilations[1], BatchNorm=BatchNorm)
self.aspp3 = _ASPPModule(inplanes, 256, 3, padding=dilations[2], dilation=dilations[2], BatchNorm=BatchNorm)
self.aspp4 = _ASPPModule(inplanes, 256, 3, padding=dilations[3], dilation=dilations[3], BatchNorm=BatchNorm)
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(inplanes, 256, 1, stride=1, bias=False),
BatchNorm(256),
nn.ReLU())
self.conv1 = nn.Conv2d(1280, 256, 1, bias=False)
self.bn1 = BatchNorm(256)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
self._init_weight()
def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x4.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return self.dropout(x)
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, SynchronizedBatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def build_aspp(backbone, output_stride, BatchNorm):
return ASPP(backbone, output_stride, BatchNorm)