-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_regression.py
36 lines (29 loc) · 1.06 KB
/
simple_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
dataframe = pd.read_csv("Salary_Data.csv")
X = dataframe.iloc[: , 0].values
y = dataframe.iloc[: , 1].values
X_train , X_test , y_train , y_test = train_test_split(X , y , test_size=1/3 , random_state =0)
# reshape the data
X_train = X_train.reshape(-1,1)
X_test = X_test.reshape(-1,1)
y_train = y_train.reshape(-1,1)
y_test = y_test.reshape(-1,1)
regressor = LinearRegression()
regressor.fit(X_train , y_train)
prediction = regressor.predict(X_test)
# plot the values
plt.scatter(X_train , y_train , color="red")
plt.plot(X_train , regressor.predict(X_train) , color="green")
plt.title("Simple Regression")
plt.xlabel("Years of experiance")
plt.ylabel("Salary")
plt.show()
plt.scatter(X_test , y_test , color="red")
plt.plot(X_test , regressor.predict(X_test) , color="green")
plt.title("Simple Regression test case")
plt.xlabel("Years of Experiance")
plt.ylabel("Salary")
plt.show()