-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathchapter34.m
787 lines (602 loc) · 26.2 KB
/
chapter34.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
%% Analyzing Neural Time Series Data
% Matlab code for Chapter 34
% Mike X Cohen
%
% This code accompanies the book, titled "Analyzing Neural Time Series Data"
% (MIT Press). Using the code without following the book may lead to confusion,
% incorrect data analyses, and misinterpretations of results.
% Mike X Cohen assumes no responsibility for inappropriate or incorrect use of this code.
%% load sample data
load sampleEEGdata
% note: Most of these figures take a while to generate. Have patience!
%% extract TF power (create data that are used for the rest of this chapter)
% definitions, selections...
chan2use = 'fcz';
min_freq = 3;
max_freq = 30;
num_frex = 20;
% define wavelet parameters
time = -1:1/EEG.srate:1;
frex = logspace(log10(min_freq),log10(max_freq),num_frex);
s = logspace(log10(3),log10(10),num_frex)./(2*pi*frex);
% definte convolution parameters
n_wavelet = length(time);
n_data = EEG.pnts*EEG.trials;
n_convolution = n_wavelet+n_data-1;
n_conv_pow2 = pow2(nextpow2(n_convolution));
half_of_wavelet_size = (n_wavelet-1)/2;
% note that you don't need the wavelet itself, you need the FFT of the wavelet
wavelets = zeros(num_frex,n_conv_pow2);
for fi = 1:num_frex
wavelets(fi,:) = fft( sqrt(1/(s(fi)*sqrt(pi))) * exp(2*1i*pi*frex(fi).*time) .* exp(-time.^2./(2*(s(fi)^2))) , n_conv_pow2 );
end
% get FFT of data
eegfft = fft(reshape(EEG.data(strcmpi(chan2use,{EEG.chanlocs.labels}),:,:),1,EEG.pnts*EEG.trials),n_conv_pow2);
% initialize
eegpower = zeros(num_frex,EEG.pnts,EEG.trials); % frequencies X time X trials
eegphase = zeros(num_frex,EEG.pnts,EEG.trials); % frequencies X time X trials
% loop through frequencies and compute synchronization
for fi=1:num_frex
% convolution
eegconv = ifft(wavelets(fi,:).*eegfft);
eegconv = eegconv(1:n_convolution);
eegconv = eegconv(half_of_wavelet_size+1:end-half_of_wavelet_size);
% reshape to time X trials
eegpower(fi,:,:) = abs(reshape(eegconv,EEG.pnts,EEG.trials)).^2;
eegphase(fi,:,:) = exp(1i*angle(reshape(eegconv,EEG.pnts,EEG.trials)));
end
% remove edge artifacts
time_s = dsearchn(EEG.times',-500);
time_e = dsearchn(EEG.times',1200);
eegpower = eegpower(:,time_s:time_e,:);
tftimes = EEG.times(time_s:time_e);
nTimepoints = numel(tftimes);
%% Figure 34.1
voxel_pval = 0.01;
cluster_pval = 0.05;
% note: try to use 1000 or more permutations for real data
n_permutes = 1000;
baseidx(1) = dsearchn(tftimes',-500);
baseidx(2) = dsearchn(tftimes',-100);
% compute actual t-test of difference
realbaselines = squeeze(mean(eegpower(:,baseidx(1):baseidx(2),:),2));
realmean = 10*log10(bsxfun(@rdivide, mean(eegpower,3), mean(realbaselines,2)));
% initialize null hypothesis matrices
permuted_maxvals = zeros(n_permutes,2,num_frex);
permuted_vals = zeros(n_permutes,num_frex,numel(tftimes));
max_clust_info = zeros(n_permutes,1);
for permi=1:n_permutes
cutpoint = randsample(2:nTimepoints-diff(baseidx)-2,1);
permuted_vals(permi,:,:) = 10*log10(bsxfun(@rdivide,mean(eegpower(:,[cutpoint:end 1:cutpoint-1],:),3),mean(realbaselines,2)) );
% btw, using bsxfun instead of repmat increases the speed
% of this loop by a factor of ~5.
end
zmap = (realmean-squeeze(mean(permuted_vals))) ./ squeeze(std(permuted_vals));
threshmean = realmean;
threshmean(abs(zmap)<norminv(1-voxel_pval))=0;
figure
subplot(221)
contourf(tftimes,frex,realmean,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('power map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
subplot(222)
contourf(tftimes,frex,zmap,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('unthresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
subplot(223)
contourf(tftimes,frex,threshmean,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Uncorrected power map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% this time, the cluster correction will be done on the permuted data, thus
% making no assumptions about parameters for p-values
for permi = 1:n_permutes
% for cluster correction, apply uncorrected threshold and get maximum cluster sizes
fakecorrsz = squeeze((permuted_vals(permi,:,:)-mean(permuted_vals,1)) ./ std(permuted_vals,[],1) );
fakecorrsz(abs(fakecorrsz)<norminv(1-voxel_pval))=0;
% get number of elements in largest supra-threshold cluster
clustinfo = bwconncomp(fakecorrsz);
max_clust_info(permi) = max([ 0 cellfun(@numel,clustinfo.PixelIdxList) ]); % the zero accounts for empty maps
% using cellfun here eliminates the need for a slower loop over cells
end
% apply cluster-level corrected threshold
zmapthresh = zmap;
% uncorrected pixel-level threshold
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=0;
% find islands and remove those smaller than cluster size threshold
clustinfo = bwconncomp(zmapthresh);
clust_info = cellfun(@numel,clustinfo.PixelIdxList);
clust_threshold = prctile(max_clust_info,100-cluster_pval*100);
% identify clusters to remove
whichclusters2remove = find(clust_info<clust_threshold);
% remove clusters
for i=1:length(whichclusters2remove)
zmapthresh(clustinfo.PixelIdxList{whichclusters2remove(i)})=0;
end
subplot(224)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Cluster-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
%% Figure 34.3
voxel_pval = 0.05;
mcc_voxel_pval = 0.05; % mcc = multiple comparisons correction
mcc_cluster_pval = 0.05;
% note: try to use 1000 or more permutations for real data
n_permutes = 1000;
real_condition_mapping = [ -ones(1,floor(EEG.trials/2)) ones(1,ceil(EEG.trials/2)) ];
% compute actual t-test of difference (using unequal N and std)
tnum = squeeze(mean(eegpower(:,:,real_condition_mapping==-1),3) - mean(eegpower(:,:,real_condition_mapping==1),3));
tdenom = sqrt( (std(eegpower(:,:,real_condition_mapping==-1),0,3).^2)./sum(real_condition_mapping==-1) + (std(eegpower(:,:,real_condition_mapping==1),0,3).^2)./sum(real_condition_mapping==1) );
real_t = tnum./tdenom;
% initialize null hypothesis matrices
permuted_tvals = zeros(n_permutes,num_frex,nTimepoints);
max_pixel_pvals = zeros(n_permutes,2);
max_clust_info = zeros(n_permutes,1);
% generate pixel-specific null hypothesis parameter distributions
for permi = 1:n_permutes
fake_condition_mapping = sign(randn(EEG.trials,1));
% compute t-map of null hypothesis
tnum = squeeze(mean(eegpower(:,:,fake_condition_mapping==-1),3)-mean(eegpower(:,:,fake_condition_mapping==1),3));
tdenom = sqrt( (std(eegpower(:,:,fake_condition_mapping==-1),0,3).^2)./sum(fake_condition_mapping==-1) + (std(eegpower(:,:,fake_condition_mapping==1),0,3).^2)./sum(fake_condition_mapping==1) );
tmap = tnum./tdenom;
% save all permuted values
permuted_tvals(permi,:,:) = tmap;
% save maximum pixel values
max_pixel_pvals(permi,:) = [ min(tmap(:)) max(tmap(:)) ];
% for cluster correction, apply uncorrected threshold and get maximum cluster sizes
% note that here, clusters were obtained by parametrically thresholding
% the t-maps
tmap(abs(tmap)<tinv(1-voxel_pval,EEG.trials-1))=0;
% get number of elements in largest supra-threshold cluster
clustinfo = bwconncomp(tmap);
max_clust_info(permi) = max([ 0 cellfun(@numel,clustinfo.PixelIdxList) ]); % notes: cellfun is superfast, and the zero accounts for empty maps
end
% now compute Z-map
zmap = (real_t-squeeze(mean(permuted_tvals,1)))./squeeze(std(permuted_tvals));
figure
subplot(221)
contourf(tftimes,frex,zmap,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Unthresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply uncorrected threshold
subplot(222)
contourf(tftimes,frex,zmap,40,'linecolor','none')
zmapthresh = zmap;
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=false;
zmapthresh=logical(zmapthresh);
hold on
contour(tftimes,frex,zmapthresh,1,'linecolor','k')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Unthresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply pixel-level corrected threshold
lower_threshold = prctile(max_pixel_pvals(:,1), mcc_voxel_pval*100/2);
upper_threshold = prctile(max_pixel_pvals(:,2),100-mcc_voxel_pval*100/2);
zmapthresh = zmap;
zmapthresh(zmapthresh>lower_threshold & zmapthresh<upper_threshold)=0;
subplot(223)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Pixel-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply cluster-level corrected threshold
zmapthresh = zmap;
% uncorrected pixel-level threshold
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=0;
% find islands and remove those smaller than cluster size threshold
clustinfo = bwconncomp(zmapthresh);
clust_info = cellfun(@numel,clustinfo.PixelIdxList);
clust_threshold = prctile(max_clust_info,100-mcc_cluster_pval*100);
% identify clusters to remove
whichclusters2remove = find(clust_info<clust_threshold);
% remove clusters
for i=1:length(whichclusters2remove)
zmapthresh(clustinfo.PixelIdxList{whichclusters2remove(i)})=0;
end
subplot(224)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Cluster-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
%% Figure 34.4
voxel_pval = 0.01;
mcc_voxel_pval = 0.05; % mcc = multiple comparisons correction
mcc_cluster_pval = 0.05;
% note: try to use 1000 or more permutations for real data
n_permutes = 1000;
rts=zeros(1,EEG.trials);
for ei=1:EEG.trials
% In this task, the button press always followed the stimulus at
% time=0. Thus, finding the RT involves finding the latency of the
% event that occurs after the time=0 event.
% If you follow a procedure like this in your data, you may need to
% include special exceptions, e.g., if there was no response or if
% a non-response marker could have occurred between stimulus and response.
time0event = find(cell2mat(EEG.epoch(ei).eventlatency)==0);
rts(ei) = EEG.epoch(ei).eventlatency{time0event+1};
end
% rank-transform RTs
rtsrank = tiedrank(rts);
% rank-transform power data (must be transformed)
eegpowerreshaped = reshape(eegpower,num_frex*nTimepoints,EEG.trials)';
eegpowerrank = tiedrank(eegpowerreshaped);
% technically, you want to perform a correlation, but a linear least-squares fit provides the same conceptual results
% while being ~15 times faster, and we don't care here about the actual scale of the data. For completeness,
% the following line shows you how to compute the Spearman correlation coefficient
% realcorrs = 1-6*sum((eegpowerrank-repmat(rtsrank',1,size(eegpowerrank,2))).^2)/(EEG.trials*(EEG.trials^2-1));
realcorrs = (rtsrank*rtsrank')\rtsrank*eegpowerrank;
realcorrs = reshape(realcorrs,num_frex,nTimepoints);
% initialize null hypothesis matrices
permuted_rvals = zeros(n_permutes,num_frex,nTimepoints);
max_pixel_rvals = zeros(n_permutes,2);
max_clust_info = zeros(n_permutes,1);
% generate pixel-specific null hypothesis parameter distributions
for permi = 1:n_permutes
fake_rt_mapping = rtsrank(randperm(EEG.trials));
% compute t-map of null hypothesis
fakecorrs = (fake_rt_mapping*fake_rt_mapping')\fake_rt_mapping*eegpowerrank;
% reshape to 2D map for cluster-correction
fakecorrs = reshape(fakecorrs,num_frex,nTimepoints);
% save all permuted values
permuted_rvals(permi,:,:) = fakecorrs;
% save maximum pixel values
max_pixel_rvals(permi,:) = [ min(fakecorrs(:)) max(fakecorrs(:)) ];
end
% this time, the cluster correction will be done on the permuted data, thus
% making no assumptions about parameters for p-values
for permi = 1:n_permutes
% indices of permutations to include in thresholding at this iteration
perms2use4distribution = true(1,n_permutes);
perms2use4distribution(permi) = 0;
% for cluster correction, apply uncorrected threshold and get maximum cluster sizes
fakecorrsz = squeeze((permuted_rvals(permi,:,:)-mean(permuted_rvals(perms2use4distribution,:,:),1)) ./ std(permuted_rvals(perms2use4distribution,:,:),[],1) );
fakecorrsz(abs(fakecorrsz)<norminv(1-voxel_pval))=0;
% get number of elements in largest supra-threshold cluster
clustinfo = bwconncomp(fakecorrsz);
max_clust_info(permi) = max([ 0 cellfun(@numel,clustinfo.PixelIdxList) ]); % the zero accounts for empty maps
end
% now compute Z-map
zmap = (realcorrs-squeeze(mean(permuted_rvals,1)))./squeeze(std(permuted_rvals));
figure
subplot(221)
contourf(tftimes,frex,zmap,40,'linecolor','none')
axis square
set(gca,'clim',[-4 4],'xlim',[-500 1200])
title('Unthresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply uncorrected threshold
zmapthresh = zmap;
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=0;
zmapthresh=logical(zmapthresh);
subplot(222)
contourf(tftimes,frex,zmap,40,'linecolor','none')
hold on
contour(tftimes,frex,zmapthresh,1,'linecolor','k')
axis square
set(gca,'clim',[-4 4],'xlim',[-500 1200])
title('Uncorrected thresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply pixel-level corrected threshold
lower_threshold = prctile(max_pixel_rvals(:,1), mcc_voxel_pval*100/2);
upper_threshold = prctile(max_pixel_rvals(:,2),100-mcc_voxel_pval*100/2);
zmapthresh = zmap;
zmapthresh(realcorrs>lower_threshold & realcorrs<upper_threshold)=0;
subplot(223)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-4 4],'xlim',[-500 1200])
title('Pixel-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply cluster-level corrected threshold
zmapthresh = zmap;
% uncorrected pixel-level threshold
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=0;
% find islands and remove those smaller than cluster size threshold
clustinfo = bwconncomp(zmapthresh);
clust_info = cellfun(@numel,clustinfo.PixelIdxList);
clust_threshold = prctile(max_clust_info,100-mcc_cluster_pval*100);
% identify clusters to remove
whichclusters2remove = find(clust_info<clust_threshold);
% remove clusters
for i=1:length(whichclusters2remove)
zmapthresh(clustinfo.PixelIdxList{whichclusters2remove(i)})=0;
end
subplot(224)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-4 4],'xlim',[-500 1200])
title('Cluster-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
%% Figure 34.5
chan2use = 'o1';
time2use = dsearchn(EEG.times',[0 250]');
freq2use = dsearchn(frex',10);
eegfft = fft(reshape(EEG.data(strcmpi(chan2use,{EEG.chanlocs.labels}),:,:),1,EEG.pnts*EEG.trials),n_conv_pow2);
eegconv = ifft(wavelets(freq2use,:).*eegfft);
eegconv = eegconv(1:n_convolution);
eegconv = eegconv(half_of_wavelet_size+1:end-half_of_wavelet_size);
% reshape to time X trials
temp = abs(reshape(eegconv,EEG.pnts,EEG.trials)).^2;
o1power = zscore(mean(temp(time2use(1):time2use(2),:),1));
% define covariates (RT and trial number)
X = [ zscore(rts') o1power' ]';
eegpowerrank = tiedrank(eegpowerreshaped)';
figure
subplot(311)
imagesc(X)
subplot(212)
imagesc(eegpowerrank)
%% Figure 34.6
voxel_pval = 0.01;
mcc_cluster_pval = 0.05;
% note: try to use 1000 or more permutations for real data
n_permutes = 1000;
realbeta = (X*X')\X*eegpowerrank';
realbeta = reshape(realbeta,[2 num_frex nTimepoints]);
% initialize null hypothesis matrices
permuted_bvals = zeros(n_permutes,2,num_frex,nTimepoints);
max_clust_info = zeros(n_permutes,2);
% generate pixel-specific null hypothesis parameter distributions
for permi = 1:n_permutes
% randomly shuffle trial order
fakeX = X(:,randperm(EEG.trials));
% compute beta-map of null hypothesis
fakebeta = (fakeX*fakeX')\fakeX*eegpowerrank';
% reshape to 2D map for cluster-correction
fakebeta = reshape(fakebeta,[2 num_frex nTimepoints ]);
% save all permuted values
permuted_bvals(permi,:,:,:) = fakebeta;
end
% this time, the cluster correction will be done on the permuted data, thus
% making no assumptions about parameters for p-values
for permi = 1:n_permutes
for testi=1:2
% for cluster correction, apply uncorrected threshold and get maximum cluster sizes
fakecorrsz = squeeze((permuted_bvals(permi,testi,:,:)-mean(permuted_bvals(:,testi,:,:),1)) ./ std(permuted_bvals(:,testi,:,:),[],1) );
fakecorrsz(abs(fakecorrsz)<norminv(1-voxel_pval))=0;
% get number of elements in largest supra-threshold cluster
clustinfo = bwconncomp(fakecorrsz);
max_clust_info(permi,testi) = max([ 0 cellfun(@numel,clustinfo.PixelIdxList) ]); % the zero accounts for empty maps
end
end
figure
for testi=1:2
% now compute Z-map
zmap = (squeeze(realbeta(testi,:,:))-squeeze(mean(permuted_bvals(:,testi,:,:),1))) ./ squeeze(std(permuted_bvals(:,testi,:,:),[],1));
subplot(2,3,1+(testi-1)*3)
contourf(tftimes,frex,zmap,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Unthresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply uncorrected threshold
zmapthresh = zmap;
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=0;
subplot(2,3,2+(testi-1)*3)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Uncorrected thresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% apply cluster-level corrected threshold
zmapthresh = zmap;
% uncorrected pixel-level threshold
zmapthresh(abs(zmapthresh)<norminv(1-voxel_pval))=0;
% find islands and remove those smaller than cluster size threshold
clustinfo = bwconncomp(zmapthresh);
clust_info = cellfun(@numel,clustinfo.PixelIdxList);
clust_threshold = prctile(max_clust_info(:,testi),100-mcc_cluster_pval*100);
% identify clusters to remove
whichclusters2remove = find(clust_info<clust_threshold);
% remove clusters
for i=1:length(whichclusters2remove)
zmapthresh(clustinfo.PixelIdxList{whichclusters2remove(i)})=0;
end
subplot(2,3,3+(testi-1)*3)
contourf(tftimes,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[-3 3],'xlim',[-500 1200])
title('Cluster-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
end
%% Figure 34.7
a = rand(10000,1);
b = rand(10000,1);
figure
clear h
subplot(221)
[y,x] = hist(a,50);
h(1)=bar(x,y,'histc');
set(gca,'xlim',[-.05 1.05])
subplot(222)
[y,x] = hist(b,50);
h(2)=bar(x,y,'histc');
set(gca,'xlim',[-.05 1.05])
subplot(212)
[y,x] = hist(atanh(a-b),50);
h(3)=bar(x,y,'histc');
set(gca,'xlim',[-2 2])
title('ITPC differences')
xlabel('difference value'), ylabel('Count')
set(h,'linestyle','none','facecolor','k')
%% Figure 34.8
% The code to produce this figure is presented in chapter19.m, between the
% cells for figures 19.6 and 19.7. To generate figure 34.8, you will need to run
% the code for figures 19.2-6.
%% Figure 34.9
voxel_pval = 0.01;
cluster_pval = 0.05;
% note: try to use 1000 or more permutations for real data
n_permutes = 1000;
% compute actual t-test of difference
realitpc = squeeze(abs(mean(eegphase,3)));
% initialize null hypothesis matrices
permuted_maxvals = zeros(n_permutes,2,num_frex);
permuted_vals = zeros(n_permutes,num_frex,EEG.pnts);
max_clust_info = zeros(n_permutes,1);
eegtemp = zeros(size(realitpc));
for permi=1:n_permutes
for triali=1:EEG.trials
cutpoint = randsample(2:nTimepoints-2,1);
eegtemp(:,:,triali) = eegphase(:,[cutpoint:end 1:cutpoint-1],triali);
end
permuted_vals(permi,:,:) = squeeze(abs(mean(eegtemp,3)));
% note: the following lines produce fairly similar results as the loop above
% cutpoint = randsample(2:nTimepoints-2,1);
%permuted_vals(permi,:,:) = squeeze(abs(mean(eegphase(:,[cutpoint:end 1:cutpoint-1],:),3)));
end
zmap = (realitpc-squeeze(mean(permuted_vals))) ./ squeeze(std(permuted_vals));
threshmean = realitpc;
threshmean(abs(zmap)<norminv(1-voxel_pval))=0;
figure
subplot(221)
contourf(EEG.times,frex,realitpc,40,'linecolor','none')
axis square
set(gca,'clim',[0 .5],'xlim',[-200 1000])
title('power map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
subplot(222)
contourf(EEG.times,frex,zmap,40,'linecolor','none')
axis square
set(gca,'clim',[-5 5],'xlim',[-200 1000])
title('unthresholded Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
subplot(223)
contourf(EEG.times,frex,threshmean,40,'linecolor','none')
axis square
set(gca,'clim',[0 .5],'xlim',[-200 1000])
title('Uncorrected power map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
% this time, the cluster correction will be done on the permuted data, thus
% making no assumptions about parameters for p-values
for permi = 1:n_permutes
% for cluster correction, apply uncorrected threshold and get maximum cluster sizes
fakecorrsz = squeeze((permuted_vals(permi,:,:)-mean(permuted_vals,1)) ./ std(permuted_vals,[],1) );
fakecorrsz(abs(fakecorrsz)<norminv(1-voxel_pval))=0;
% get number of elements in largest supra-threshold cluster
clustinfo = bwconncomp(fakecorrsz);
max_clust_info(permi) = max([ 0 cellfun(@numel,clustinfo.PixelIdxList) ]); % the zero accounts for empty maps
% using cellfun here eliminates the need for a slower loop over cells
end
% apply cluster-level corrected threshold
zmapthresh = realitpc;
% uncorrected pixel-level threshold
zmapthresh(abs(zmap)<norminv(1-voxel_pval))=0;
% find islands and remove those smaller than cluster size threshold
clustinfo = bwconncomp(zmapthresh);
clust_info = cellfun(@numel,clustinfo.PixelIdxList);
clust_threshold = prctile(max_clust_info,100-cluster_pval*100);
% identify clusters to remove
whichclusters2remove = find(clust_info<clust_threshold);
% remove clusters
for i=1:length(whichclusters2remove)
zmapthresh(clustinfo.PixelIdxList{whichclusters2remove(i)})=0;
end
subplot(224)
contourf(EEG.times,frex,zmapthresh,40,'linecolor','none')
axis square
set(gca,'clim',[0 .5],'xlim',[-200 1000])
title('Cluster-corrected Z map')
xlabel('Time (ms)'), ylabel('Frequency (Hz)')
%% Figure 33.5
% The code for figures 33.5/6 are presented here and in the next cell. You
% will need first to run the code for figure 34.3 to run this code.
% compute actual t-test of difference (using unequal N and std)
tnum = squeeze(mean(eegpower(4,400,real_condition_mapping==-1),3) - mean(eegpower(4,400,real_condition_mapping==1),3));
tdenom = sqrt( (std(eegpower(4,400,real_condition_mapping==-1),0,3).^2)./sum(real_condition_mapping==-1) + (std(eegpower(4,400,real_condition_mapping==1),0,3).^2)./sum(real_condition_mapping==1) );
real_t = tnum./tdenom;
n_permutes = round(linspace(100,3000,200));
zvals = zeros(size(n_permutes));
for grandpermi=1:length(n_permutes)
% initialize null hypothesis matrices
permuted_tvals = zeros(n_permutes(grandpermi),1);
% generate pixel-specific null hypothesis parameter distributions
for permi = 1:n_permutes(grandpermi)
fake_condition_mapping = sign(randn(EEG.trials,1));
% compute t-map of null hypothesis
tnum = squeeze(mean(eegpower(4,400,fake_condition_mapping==-1),3)-mean(eegpower(4,400,fake_condition_mapping==1),3));
tdenom = sqrt( (std(eegpower(4,400,fake_condition_mapping==-1),0,3).^2)./sum(fake_condition_mapping==-1) + (std(eegpower(4,400,fake_condition_mapping==1),0,3).^2)./sum(fake_condition_mapping==1) );
% save all permuted values
permuted_tvals(permi) = tnum./tdenom;
end
zvals(grandpermi) = (real_t-mean(permuted_tvals))/std(permuted_tvals);
% display progress
if mod(grandpermi,20)==0, disp([ 'Metapermutation #' num2str(grandpermi) ]); end
end
figure
subplot(211)
plot(n_permutes,zvals)
xlabel('Number of iterations'), ylabel('Z-value')
subplot(212)
hist(zvals,30)
xlabel('Z-value at different runs of permutation test'), ylabel('Count')
%% Figure 33.6
% compute actual t-test of difference (using unequal N and std)
tnum = squeeze(mean(eegpower(:,:,real_condition_mapping==-1),3) - mean(eegpower(:,:,real_condition_mapping==1),3));
tdenom = sqrt( (std(eegpower(:,:,real_condition_mapping==-1),0,3).^2)./sum(real_condition_mapping==-1) + (std(eegpower(:,:,real_condition_mapping==1),0,3).^2)./sum(real_condition_mapping==1) );
real_t = tnum./tdenom;
n_permutes = round(linspace(100,3000,200));
zvals = zeros(length(n_permutes),size(tnum,1),size(tnum,2));
for grandpermi=1:length(n_permutes)
% initialize null hypothesis matrices
permuted_tvals = zeros(n_permutes(grandpermi),size(tnum,1),size(tnum,2));
% generate pixel-specific null hypothesis parameter distributions
for permi = 1:n_permutes(grandpermi)
fake_condition_mapping = sign(randn(EEG.trials,1));
% compute t-map of null hypothesis
tnum = squeeze(mean(eegpower(:,:,fake_condition_mapping==-1),3)-mean(eegpower(:,:,fake_condition_mapping==1),3));
tdenom = sqrt( (std(eegpower(:,:,fake_condition_mapping==-1),0,3).^2)./sum(fake_condition_mapping==-1) + (std(eegpower(:,:,fake_condition_mapping==1),0,3).^2)./sum(fake_condition_mapping==1) );
% save all permuted values
permuted_tvals(permi,:,:) = tnum./tdenom;
end
zvals(grandpermi,:,:) = (real_t-squeeze(mean(permuted_tvals)))./squeeze(std(permuted_tvals));
% display progress
if mod(grandpermi,20)==0, disp([ 'Metapermutation # ' num2str(grandpermi) ]); end
end
figure
subplot(211)
plot(n_permutes,squeeze(zvals(:,4,400)))
subplot(212)
hist(squeeze(zvals(:,4,400)),30)
zvalsall = reshape(zvals,length(n_permutes),size(tnum,1)*size(tnum,2));
figure
plot(mean(zvalsall,1),std(zvalsall,[],1),'.')
set(gca,'xlim',[-3.5 3.5],'ylim',[0 .12])
xlabel('Average Z-statistic')
ylabel('Standard deviation of Z-statistics')
figure
clear h
[~,z0]=min(abs(mean(zvalsall,1)));
[x0,y0]=ind2sub(size(tnum),z0);
[yy,xx]=hist(squeeze(zvals(:,x0,y0)),30);
h(1) = bar(xx,yy,'histc');
hold on
plot([0 0],get(gca,'ylim'),'k:')
[~,z2]=min(abs(mean(zvalsall,1)-2));
[x2,y2]=ind2sub(size(tnum),z2);
[yy,xx]=hist(squeeze(zvals(:,x2,y2)),30);
h(2) = bar(xx,yy,'histc');
plot([2 2],get(gca,'ylim'),'k:')
[~,z3]=min(abs(mean(zvalsall,1)--3));
[x3,y3]=ind2sub(size(tnum),z3);
[yy,xx]=hist(squeeze(zvals(:,x3,y3)),30);
hold on
h(3) = bar(xx,yy,'histc');
plot([-3 -3],get(gca,'ylim'),'k:')
set(h,'linestyle','none')
set(gca,'xlim',[-3.5 3.5])
xlabel('Z-value')
ylabel('Count of possible z-values')
%% end.