Skip to content
This repository has been archived by the owner on Jun 13, 2024. It is now read-only.

Run train_ mutil.py about some problems encountered in custom datasets #174

Open
xiaoxiongmaoxuexi opened this issue Mar 15, 2022 · 4 comments

Comments

@xiaoxiongmaoxuexi
Copy link

Hello, I have a problem. When I use my own data set for multi-target detection, the accuracy of training is 0. But objects can be recognized normally. Do you know why? Thank you for your answer. Is the label used for single target detection and multi-target detection。
The following phenomena appear in training. But the official data set training is normal.
2022-03-15 15:02:37 Testing cup...
2022-03-15 15:02:37 Number of test samples: 895
2022-03-15 15:03:06 Acc using 5 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 10 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 15 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 20 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 25 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 30 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 35 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 40 px 2D Projection = 0.00%
2022-03-15 15:03:06 Acc using 45 px 2D Projection = 0.67%
2022-03-15 15:03:06 Acc using 50 px 2D Projection = 1.12%
2022-03-15 15:03:06 -----------------------------------
2022-03-15 15:03:06 tensor to cuda : 0.000142
2022-03-15 15:03:06 predict : 0.003501
2022-03-15 15:03:06 get_region_boxes : 0.026212
2022-03-15 15:03:06 eval : 0.001130
2022-03-15 15:03:06 total : 0.030986
2022-03-15 15:03:06 -----------------------------------
2022-03-15 15:03:06 Testing sugar...
2022-03-15 15:03:06 Number of test samples: 480
2022-03-15 15:03:18 Acc using 5 px 2D Projection = 0.00%
2022-03-15 15:03:18 Acc using 10 px 2D Projection = 0.00%
2022-03-15 15:03:18 Acc using 15 px 2D Projection = 0.00%
2022-03-15 15:03:18 Acc using 20 px 2D Projection = 0.00%
2022-03-15 15:03:18 Acc using 25 px 2D Projection = 0.00%
2022-03-15 15:03:18 Acc using 30 px 2D Projection = 0.00%
2022-03-15 15:03:18 Acc using 35 px 2D Projection = 0.42%
2022-03-15 15:03:18 Acc using 40 px 2D Projection = 2.92%
2022-03-15 15:03:18 Acc using 45 px 2D Projection = 19.58%
2022-03-15 15:03:18 Acc using 50 px 2D Projection = 32.50%
2022-03-15 15:03:18 -----------------------------------
2022-03-15 15:03:18 tensor to cuda : 0.000140
2022-03-15 15:03:18 predict : 0.003520
2022-03-15 15:03:18 get_region_boxes : 0.019432
2022-03-15 15:03:18 eval : 0.001209
2022-03-15 15:03:18 total : 0.024300
2022-03-15 15:03:18 -----------------------------------
2022-03-15 15:03:18 Testing driller...
2022-03-15 15:03:19 Number of test samples: 1009
2022-03-15 15:03:51 Acc using 5 px 2D Projection = 0.00%
2022-03-15 15:03:51 Acc using 10 px 2D Projection = 0.00%
2022-03-15 15:03:51 Acc using 15 px 2D Projection = 0.00%
2022-03-15 15:03:51 Acc using 20 px 2D Projection = 0.10%
2022-03-15 15:03:51 Acc using 25 px 2D Projection = 0.20%
2022-03-15 15:03:51 Acc using 30 px 2D Projection = 1.09%
2022-03-15 15:03:51 Acc using 35 px 2D Projection = 3.57%
2022-03-15 15:03:51 Acc using 40 px 2D Projection = 10.70%
2022-03-15 15:03:51 Acc using 45 px 2D Projection = 21.21%
2022-03-15 15:03:51 Acc using 50 px 2D Projection = 36.17%
2022-03-15 15:03:51 -----------------------------------
2022-03-15 15:03:51 tensor to cuda : 0.000172
2022-03-15 15:03:51 predict : 0.005028
2022-03-15 15:03:51 get_region_boxes : 0.020104
2022-03-15 15:03:51 eval : 0.003032
2022-03-15 15:03:51 total : 0.028337
2022-03-15 15:03:51 -----------------------------------
2022-03-15 15:03:51 Testing duck...
2022-03-15 15:03:52 Number of test samples: 1065
2022-03-15 15:04:35 Acc using 5 px 2D Projection = 0.00%
2022-03-15 15:04:35 Acc using 10 px 2D Projection = 0.00%
2022-03-15 15:04:35 Acc using 15 px 2D Projection = 0.19%
2022-03-15 15:04:35 Acc using 20 px 2D Projection = 1.22%
2022-03-15 15:04:35 Acc using 25 px 2D Projection = 6.48%
2022-03-15 15:04:35 Acc using 30 px 2D Projection = 12.39%
2022-03-15 15:04:35 Acc using 35 px 2D Projection = 14.84%
2022-03-15 15:04:35 Acc using 40 px 2D Projection = 15.87%
2022-03-15 15:04:35 Acc using 45 px 2D Projection = 15.96%
2022-03-15 15:04:35 Acc using 50 px 2D Projection = 16.15%
2022-03-15 15:04:35 -----------------------------------
2022-03-15 15:04:35 tensor to cuda : 0.000231
2022-03-15 15:04:35 predict : 0.005087
2022-03-15 15:04:35 get_region_boxes : 0.032968
2022-03-15 15:04:35 eval : 0.002247
2022-03-15 15:04:35 total : 0.040533
2022-03-15 15:04:35 -----------------------------------
2022-03-15 15:04:35 Testing glue...
2022-03-15 15:04:35 Number of test samples: 1036
2022-03-15 15:05:07 Acc using 5 px 2D Projection = 0.00%
2022-03-15 15:05:07 Acc using 10 px 2D Projection = 0.00%
2022-03-15 15:05:07 Acc using 15 px 2D Projection = 0.10%
2022-03-15 15:05:07 Acc using 20 px 2D Projection = 1.25%
2022-03-15 15:05:07 Acc using 25 px 2D Projection = 4.83%
2022-03-15 15:05:07 Acc using 30 px 2D Projection = 9.27%
2022-03-15 15:05:07 Acc using 35 px 2D Projection = 14.38%
2022-03-15 15:05:07 Acc using 40 px 2D Projection = 19.98%
2022-03-15 15:05:07 Acc using 45 px 2D Projection = 25.00%
2022-03-15 15:05:07 Acc using 50 px 2D Projection = 28.67%

@xiaoxiongmaoxuexi
Copy link
Author

The cup is a dataset I made myself. Thank you for your answer, thank you.

@xiaoxiongmaoxuexi
Copy link
Author

Another problem is that when the trained model is visualized, it can be recognized in the context of and making data sets. When I am in other contexts, the recognition effect is very poor or even unrecognizable.

@zczczdc
Copy link

zczczdc commented Apr 18, 2022

Hey, did you succeed in printing the bounding boxes for multiple objects in a single image? I try to run the source program valid.py and the visualization works, but the source program valid_muti.py cannot be displayed visually. Have you ever encountered such a problem? Thanks for your answer

@asd646942825
Copy link

Why is the glue so effective in your multi-target recognition? When I trained, I couldn't train the original author at all. Is your dataset loading slow?
Thank you for your reply

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants