You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I encountered a problem: there was no issue when running LightGBM Alpha158 in the example file, but both ALSTM and KRNN resulted in train nan and valid nan issues, regardless of whether it was Alpha158 or Alpha360. Here is the error report:
[20964:MainThread](2024-07-26 23:03:01,094) INFO - qlib.qrun - [cli.py:78] - Render the template with the context: {}
[20964:MainThread](2024-07-26 23:03:01,107) INFO - qlib.Initialization - [config.py:416] - default_conf: client.
[20964:MainThread](2024-07-26 23:03:01,109) INFO - qlib.Initialization - [init.py:74] - qlib successfully initialized based on client settings.
[20964:MainThread](2024-07-26 23:03:01,109) INFO - qlib.Initialization - [init.py:76] - data_path={'__DEFAULT_FREQ': WindowsPath('C:/quant_data/qlib_bin')}
[20964:MainThread](2024-07-26 23:03:01,111) INFO - qlib.workflow - [exp.py:258] - Experiment 1 starts running ...
[20964:MainThread](2024-07-26 23:03:01,219) INFO - qlib.workflow - [recorder.py:341] - Recorder d73d6db63d0f4230ad2eba04096c6eb0 starts running under Experiment 1 ...
warning: in the working copy of 'examples/workflow_by_code.ipynb', LF will be replaced by CRLF the next time Git touches it
ModuleNotFoundError. XGBModel is skipped(optional: maybe installing xgboost can fix it).
[20964:MainThread](2024-07-26 23:03:02,806) INFO - qlib.ALSTM - [pytorch_alstm.py:59] - ALSTM pytorch version...
[20964:MainThread](2024-07-26 23:03:02,822) INFO - qlib.ALSTM - [pytorch_alstm.py:76] - ALSTM parameters setting:
d_feat : 6
hidden_size : 64
num_layers : 2
dropout : 0.0
n_epochs : 200
lr : 0.001
metric : loss
batch_size : 800
early_stop : 20
optimizer : adam
loss_type : mse
device : cuda:0
use_GPU : True
seed : None
[20964:MainThread](2024-07-26 23:03:02,824) INFO - qlib.ALSTM - [pytorch_alstm.py:119] - model:
ALSTMModel(
(net): Sequential(
(fc_in): Linear(in_features=6, out_features=64, bias=True)
(act): Tanh()
)
(rnn): GRU(64, 64, num_layers=2, batch_first=True)
(fc_out): Linear(in_features=128, out_features=1, bias=True)
(att_net): Sequential(
(att_fc_in): Linear(in_features=64, out_features=32, bias=True)
(att_dropout): Dropout(p=0.0, inplace=False)
(att_act): Tanh()
(att_fc_out): Linear(in_features=32, out_features=1, bias=False)
(att_softmax): Softmax(dim=1)
)
)
[20964:MainThread](2024-07-26 23:03:02,824) INFO - qlib.ALSTM - [pytorch_alstm.py:120] - model size: 0.0502 MB
[20964:MainThread](2024-07-26 23:06:07,731) INFO - qlib.timer - [log.py:127] - Time cost: 183.120s | Loading data Done
[20964:MainThread](2024-07-26 23:06:27,218) INFO - qlib.timer - [log.py:127] - Time cost: 17.138s | RobustZScoreNorm Done
[20964:MainThread](2024-07-26 23:06:28,487) INFO - qlib.timer - [log.py:127] - Time cost: 1.265s | Fillna Done
[20964:MainThread](2024-07-26 23:06:30,228) INFO - qlib.timer - [log.py:127] - Time cost: 0.522s | DropnaLabel Done
C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\data\dataset\processor.py:363: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df[cols] = t
[20964:MainThread](2024-07-26 23:06:30,653) INFO - qlib.timer - [log.py:127] - Time cost: 0.424s | CSRankNorm Done
[20964:MainThread](2024-07-26 23:06:30,788) INFO - qlib.timer - [log.py:127] - Time cost: 23.055s | fit & process data Done
[20964:MainThread](2024-07-26 23:06:30,789) INFO - qlib.timer - [log.py:127] - Time cost: 206.178s | Init data Done
[20964:MainThread](2024-07-26 23:06:30,810) WARNING - qlib.utils - [init.py:847] - The parameter reweighter with value None is ignored.
[20964:MainThread](2024-07-26 23:06:32,877) INFO - qlib.ALSTM - [pytorch_alstm.py:235] - training...
[20964:MainThread](2024-07-26 23:06:32,878) INFO - qlib.ALSTM - [pytorch_alstm.py:239] - Epoch0:
[20964:MainThread](2024-07-26 23:06:32,899) INFO - qlib.ALSTM - [pytorch_alstm.py:240] - training...
[20964:MainThread](2024-07-26 23:06:43,309) INFO - qlib.ALSTM - [pytorch_alstm.py:242] - evaluating...
[20964:MainThread](2024-07-26 23:06:46,892) INFO - qlib.ALSTM - [pytorch_alstm.py:245] - train nan, valid nan
[20964:MainThread](2024-07-26 23:06:46,894) INFO - qlib.ALSTM - [pytorch_alstm.py:239] - Epoch1:
[20964:MainThread](2024-07-26 23:06:46,895) INFO - qlib.ALSTM - [pytorch_alstm.py:240] - training...
[20964:MainThread](2024-07-26 23:06:55,218) INFO - qlib.ALSTM - [pytorch_alstm.py:242] - evaluating...
[20964:MainThread](2024-07-26 23:06:59,019) INFO - qlib.ALSTM - [pytorch_alstm.py:245] - train nan, valid nan
[20964:MainThread](2024-07-26 23:06:59,020) INFO - qlib.ALSTM - [pytorch_alstm.py:239] - Epoch2:
[20964:MainThread](2024-07-26 23:06:59,020) INFO - qlib.ALSTM - [pytorch_alstm.py:240] - training...
[20964:MainThread](2024-07-26 23:07:03,095) ERROR - qlib.workflow - [utils.py:41] - An exception has been raised[KeyboardInterrupt: ].
File "C:\Users\31878\miniconda3\envs\quant\lib\runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "C:\Users\31878\miniconda3\envs\quant\lib\runpy.py", line 87, in run_code
exec(code, run_globals)
File "C:\Users\31878\miniconda3\envs\quant\Scripts\qrun.exe_main.py", line 7, in
sys.exit(run())
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\workflow\cli.py", line 151, in run
fire.Fire(workflow)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\fire\core.py", line 143, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\fire\core.py", line 477, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\fire\core.py", line 693, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\workflow\cli.py", line 145, in workflow
recorder = task_train(config.get("task"), experiment_name=experiment_name)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\model\trainer.py", line 127, in task_train
_exe_task(task_config)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\model\trainer.py", line 49, in exe_task
auto_filter_kwargs(model.fit)(dataset, reweighter=reweighter)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\utils_init.py", line 850, in _func
return func(*args, **new_kwargs)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\contrib\model\pytorch_alstm.py", line 241, in fit
self.train_epoch(x_train, y_train)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\contrib\model\pytorch_alstm.py", line 169, in train_epoch
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
KeyboardInterrupt:
[20964:MainThread](2024-07-26 23:07:03,104) INFO - qlib.timer - [log.py:127] - Time cost: 0.003s | waiting async_log Done
^C
The text was updated successfully, but these errors were encountered:
I encountered a problem: there was no issue when running LightGBM Alpha158 in the example file, but both ALSTM and KRNN resulted in train nan and valid nan issues, regardless of whether it was Alpha158 or Alpha360. Here is the error report:
[20964:MainThread](2024-07-26 23:03:01,094) INFO - qlib.qrun - [cli.py:78] - Render the template with the context: {}
[20964:MainThread](2024-07-26 23:03:01,107) INFO - qlib.Initialization - [config.py:416] - default_conf: client.
[20964:MainThread](2024-07-26 23:03:01,109) INFO - qlib.Initialization - [init.py:74] - qlib successfully initialized based on client settings.
[20964:MainThread](2024-07-26 23:03:01,109) INFO - qlib.Initialization - [init.py:76] - data_path={'__DEFAULT_FREQ': WindowsPath('C:/quant_data/qlib_bin')}
[20964:MainThread](2024-07-26 23:03:01,111) INFO - qlib.workflow - [exp.py:258] - Experiment 1 starts running ...
[20964:MainThread](2024-07-26 23:03:01,219) INFO - qlib.workflow - [recorder.py:341] - Recorder d73d6db63d0f4230ad2eba04096c6eb0 starts running under Experiment 1 ...
warning: in the working copy of 'examples/workflow_by_code.ipynb', LF will be replaced by CRLF the next time Git touches it
ModuleNotFoundError. XGBModel is skipped(optional: maybe installing xgboost can fix it).
[20964:MainThread](2024-07-26 23:03:02,806) INFO - qlib.ALSTM - [pytorch_alstm.py:59] - ALSTM pytorch version...
[20964:MainThread](2024-07-26 23:03:02,822) INFO - qlib.ALSTM - [pytorch_alstm.py:76] - ALSTM parameters setting:
d_feat : 6
hidden_size : 64
num_layers : 2
dropout : 0.0
n_epochs : 200
lr : 0.001
metric : loss
batch_size : 800
early_stop : 20
optimizer : adam
loss_type : mse
device : cuda:0
use_GPU : True
seed : None
[20964:MainThread](2024-07-26 23:03:02,824) INFO - qlib.ALSTM - [pytorch_alstm.py:119] - model:
ALSTMModel(
(net): Sequential(
(fc_in): Linear(in_features=6, out_features=64, bias=True)
(act): Tanh()
)
(rnn): GRU(64, 64, num_layers=2, batch_first=True)
(fc_out): Linear(in_features=128, out_features=1, bias=True)
(att_net): Sequential(
(att_fc_in): Linear(in_features=64, out_features=32, bias=True)
(att_dropout): Dropout(p=0.0, inplace=False)
(att_act): Tanh()
(att_fc_out): Linear(in_features=32, out_features=1, bias=False)
(att_softmax): Softmax(dim=1)
)
)
[20964:MainThread](2024-07-26 23:03:02,824) INFO - qlib.ALSTM - [pytorch_alstm.py:120] - model size: 0.0502 MB
[20964:MainThread](2024-07-26 23:06:07,731) INFO - qlib.timer - [log.py:127] - Time cost: 183.120s | Loading data Done
[20964:MainThread](2024-07-26 23:06:27,218) INFO - qlib.timer - [log.py:127] - Time cost: 17.138s | RobustZScoreNorm Done
[20964:MainThread](2024-07-26 23:06:28,487) INFO - qlib.timer - [log.py:127] - Time cost: 1.265s | Fillna Done
[20964:MainThread](2024-07-26 23:06:30,228) INFO - qlib.timer - [log.py:127] - Time cost: 0.522s | DropnaLabel Done
C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\data\dataset\processor.py:363: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df[cols] = t
[20964:MainThread](2024-07-26 23:06:30,653) INFO - qlib.timer - [log.py:127] - Time cost: 0.424s | CSRankNorm Done
[20964:MainThread](2024-07-26 23:06:30,788) INFO - qlib.timer - [log.py:127] - Time cost: 23.055s | fit & process data Done
[20964:MainThread](2024-07-26 23:06:30,789) INFO - qlib.timer - [log.py:127] - Time cost: 206.178s | Init data Done
[20964:MainThread](2024-07-26 23:06:30,810) WARNING - qlib.utils - [init.py:847] - The parameter
reweighter
with valueNone
is ignored.[20964:MainThread](2024-07-26 23:06:32,877) INFO - qlib.ALSTM - [pytorch_alstm.py:235] - training...
[20964:MainThread](2024-07-26 23:06:32,878) INFO - qlib.ALSTM - [pytorch_alstm.py:239] - Epoch0:
[20964:MainThread](2024-07-26 23:06:32,899) INFO - qlib.ALSTM - [pytorch_alstm.py:240] - training...
[20964:MainThread](2024-07-26 23:06:43,309) INFO - qlib.ALSTM - [pytorch_alstm.py:242] - evaluating...
[20964:MainThread](2024-07-26 23:06:46,892) INFO - qlib.ALSTM - [pytorch_alstm.py:245] - train nan, valid nan
[20964:MainThread](2024-07-26 23:06:46,894) INFO - qlib.ALSTM - [pytorch_alstm.py:239] - Epoch1:
[20964:MainThread](2024-07-26 23:06:46,895) INFO - qlib.ALSTM - [pytorch_alstm.py:240] - training...
[20964:MainThread](2024-07-26 23:06:55,218) INFO - qlib.ALSTM - [pytorch_alstm.py:242] - evaluating...
[20964:MainThread](2024-07-26 23:06:59,019) INFO - qlib.ALSTM - [pytorch_alstm.py:245] - train nan, valid nan
[20964:MainThread](2024-07-26 23:06:59,020) INFO - qlib.ALSTM - [pytorch_alstm.py:239] - Epoch2:
[20964:MainThread](2024-07-26 23:06:59,020) INFO - qlib.ALSTM - [pytorch_alstm.py:240] - training...
[20964:MainThread](2024-07-26 23:07:03,095) ERROR - qlib.workflow - [utils.py:41] - An exception has been raised[KeyboardInterrupt: ].
File "C:\Users\31878\miniconda3\envs\quant\lib\runpy.py", line 194, in _run_module_as_main
return _run_code(code, main_globals, None,
File "C:\Users\31878\miniconda3\envs\quant\lib\runpy.py", line 87, in run_code
exec(code, run_globals)
File "C:\Users\31878\miniconda3\envs\quant\Scripts\qrun.exe_main.py", line 7, in
sys.exit(run())
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\workflow\cli.py", line 151, in run
fire.Fire(workflow)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\fire\core.py", line 143, in Fire
component_trace = _Fire(component, args, parsed_flag_args, context, name)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\fire\core.py", line 477, in _Fire
component, remaining_args = _CallAndUpdateTrace(
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\fire\core.py", line 693, in _CallAndUpdateTrace
component = fn(*varargs, **kwargs)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\workflow\cli.py", line 145, in workflow
recorder = task_train(config.get("task"), experiment_name=experiment_name)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\model\trainer.py", line 127, in task_train
_exe_task(task_config)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\model\trainer.py", line 49, in exe_task
auto_filter_kwargs(model.fit)(dataset, reweighter=reweighter)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\utils_init.py", line 850, in _func
return func(*args, **new_kwargs)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\contrib\model\pytorch_alstm.py", line 241, in fit
self.train_epoch(x_train, y_train)
File "C:\Users\31878\miniconda3\envs\quant\lib\site-packages\qlib\contrib\model\pytorch_alstm.py", line 169, in train_epoch
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
KeyboardInterrupt:
[20964:MainThread](2024-07-26 23:07:03,104) INFO - qlib.timer - [log.py:127] - Time cost: 0.003s | waiting
async_log
Done^C
The text was updated successfully, but these errors were encountered: