-
Notifications
You must be signed in to change notification settings - Fork 8
/
process_stylization.py
137 lines (113 loc) · 5.52 KB
/
process_stylization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from __future__ import print_function
import time
import numpy as np
from PIL import Image
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.utils as utils
import torch.nn as nn
import torch
from smooth_filter import smooth_filter
class ReMapping:
def __init__(self):
self.remapping = []
def process(self, seg):
new_seg = seg.copy()
for k, v in self.remapping.items():
new_seg[seg == k] = v
return new_seg
class Timer:
def __init__(self, msg):
self.msg = msg
self.start_time = None
def __enter__(self):
self.start_time = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
print(self.msg % (time.time() - self.start_time))
def memory_limit_image_resize(cont_img):
# prevent too small or too big images
MINSIZE=256
MAXSIZE=960
orig_width = cont_img.width
orig_height = cont_img.height
if max(cont_img.width,cont_img.height) < MINSIZE:
if cont_img.width > cont_img.height:
cont_img.thumbnail((int(cont_img.width*1.0/cont_img.height*MINSIZE), MINSIZE), Image.BICUBIC)
else:
cont_img.thumbnail((MINSIZE, int(cont_img.height*1.0/cont_img.width*MINSIZE)), Image.BICUBIC)
if min(cont_img.width,cont_img.height) > MAXSIZE:
if cont_img.width > cont_img.height:
cont_img.thumbnail((MAXSIZE, int(cont_img.height*1.0/cont_img.width*MAXSIZE)), Image.BICUBIC)
else:
cont_img.thumbnail(((int(cont_img.width*1.0/cont_img.height*MAXSIZE), MAXSIZE)), Image.BICUBIC)
print("Resize image: (%d,%d)->(%d,%d)" % (orig_width, orig_height, cont_img.width, cont_img.height))
return cont_img.width, cont_img.height
def stylization(stylization_module, smoothing_module, content_image_path, style_image_path, content_seg_path, style_seg_path, output_image_path,
cuda, save_intermediate, no_post, cont_seg_remapping=None, styl_seg_remapping=None):
# Load image
with torch.no_grad():
cont_img = Image.open(content_image_path).convert('RGB')
styl_img = Image.open(style_image_path).convert('RGB')
new_cw, new_ch = memory_limit_image_resize(cont_img)
new_sw, new_sh = memory_limit_image_resize(styl_img)
cont_pilimg = cont_img.copy()
cw = cont_pilimg.width
ch = cont_pilimg.height
try:
cont_seg = Image.open(content_seg_path)
styl_seg = Image.open(style_seg_path)
cont_seg.resize((new_cw,new_ch),Image.NEAREST)
styl_seg.resize((new_sw,new_sh),Image.NEAREST)
except:
cont_seg = []
styl_seg = []
cont_img = transforms.ToTensor()(cont_img).unsqueeze(0)
styl_img = transforms.ToTensor()(styl_img).unsqueeze(0)
if cuda:
cont_img = cont_img.cuda(0)
styl_img = styl_img.cuda(0)
stylization_module.cuda(0)
# cont_img = Variable(cont_img, volatile=True)
# styl_img = Variable(styl_img, volatile=True)
cont_seg = np.asarray(cont_seg)
styl_seg = np.asarray(styl_seg)
if cont_seg_remapping is not None:
cont_seg = cont_seg_remapping.process(cont_seg)
if styl_seg_remapping is not None:
styl_seg = styl_seg_remapping.process(styl_seg)
if save_intermediate:
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" %(new_cw,new_ch,cw,ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch,cw), mode='bilinear')
utils.save_image(stylized_img.data.cpu().float(), output_image_path, nrow=1, padding=0)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(output_image_path, content_image_path)
out_img.save(output_image_path)
if not cuda:
print("NotImplemented: The CPU version of smooth filter has not been implemented currently.")
return
if no_post is False:
with Timer("Elapsed time in post processing: %f"):
out_img = smooth_filter(output_image_path, content_image_path, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)
else:
with Timer("Elapsed time in stylization: %f"):
stylized_img = stylization_module.transform(cont_img, styl_img, cont_seg, styl_seg)
if ch != new_ch or cw != new_cw:
print("De-resize image: (%d,%d)->(%d,%d)" %(new_cw,new_ch,cw,ch))
stylized_img = nn.functional.upsample(stylized_img, size=(ch,cw), mode='bilinear')
grid = utils.make_grid(stylized_img.data, nrow=1, padding=0)
ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy()
out_img = Image.fromarray(ndarr)
with Timer("Elapsed time in propagation: %f"):
out_img = smoothing_module.process(out_img, cont_pilimg)
if no_post is False:
with Timer("Elapsed time in post processing: %f"):
out_img = smooth_filter(out_img, cont_pilimg, f_radius=15, f_edge=1e-1)
out_img.save(output_image_path)