-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
764 lines (640 loc) · 25.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
#!/usr/bin/env python
import sys
import gc
import glob
import time
import os
from PIL import Image
import mss
import pandas as pd
try:
# import cupy as np
import numpy as np
except ImportError:
print("Cupy not installed.")
import numpy as np
from skimage.transform import resize
from skimage.io import imread
# comment these out when using WSL
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import cv2
from inputs import get_gamepad
import math
import threading
class Screenshotter(object):
def __init__(self):
# import openvino_test
self.sct = mss.mss()
self.vec = None
self._monitor_thread = threading.Thread(target=self._get_image, args=())
self._monitor_thread.daemon = True
self._monitor_thread.start()
# self.ie, self.net, self.exec_net, self.output_layer_ir, self.input_layer_ir = openvino_test.start()
def _get_image(self):
while True:
time.sleep(0.02)
# Get raw pixels from the screen
t1 = time.perf_counter()
sct_img = self.sct.grab({ "top":Screenshot.OFFSET_Y,
"left": Screenshot.OFFSET_X,
"width": Screenshot.SRC_W,
"height": Screenshot.SRC_H})
# Create the Image
# print(f'[DEBUG] Screenshot took {time.perf_counter() - t1} seconds')
temp = np.array(Image.frombytes('RGB', sct_img.size, sct_img.bgra, 'raw', 'BGRX'))
#Perform segmentations
# temp = self.convert_to_segmented(temp)
# DEBUG
# import matplotlib.pyplot as plt
# Resize
self.vec = cv2.resize(temp, (Sample.IMG_W, Sample.IMG_H), interpolation=cv2.INTER_LINEAR_EXACT)
self.vec = cv2.cvtColor(self.vec, cv2.COLOR_BGR2RGB)
# Augmentations
# vec = cv2.rectangle(img=vec.astype(np.uint8), pt1=(int(0),int(0)), pt2=(int(480), int(90)), color=[0, 0, 0], thickness=cv2.FILLED)
# return vec
def take_screenshot(self):
if self.vec is None:
time.sleep(0.1)
# copy
vec = self.vec.copy()
return vec
# def convert_to_segmented(self, img):
# return openvino_test.inference(img, self.ie, self.net, self.exec_net, self.output_layer_ir, self.input_layer_ir, True)
def resize_image(img):
im = resize(img, (Sample.IMG_H, Sample.IMG_W, Sample.IMG_D))
im_arr = im.reshape((Sample.IMG_H, Sample.IMG_W, Sample.IMG_D))
return im_arr
class Screenshot(object):
SRC_W = 1920
SRC_H = 1080
# SRC_W = 300
# SRC_H = 300
SRC_D = 3
OFFSET_X = 320 # because of ultrawide monitor
OFFSET_Y = 0
# OFFSET_X = 1920
# OFFSET_Y = 780
class Sample(object):
IMG_W = 240 # 480
IMG_H = 20 # 270 # 135 # crop bottom and top (unimportant parts)
# IMG_W = 300
# IMG_H = 300
IMG_D = 3
class XboxController(object):
MAX_TRIG_VAL = math.pow(2, 8)
MAX_JOY_VAL = math.pow(2, 15)
def __init__(self):
self.LeftJoystickY = 0
self.LeftJoystickX = 0
self.RightJoystickY = 0
self.RightJoystickX = 0
self.LeftTrigger = 0
self.RightTrigger = 0
self.LeftBumper = 0
self.RightBumper = 0
self.A = 0
self.X = 0
self.Y = 0
self.B = 0
self.LeftThumb = 0
self.RightThumb = 0
self.Back = 0
self.Start = 0
self.LeftDPad = 0
self.RightDPad = 0
self.UpDPad = 0
self.DownDPad = 0
self._monitor_thread = threading.Thread(target=self._monitor_controller, args=())
self._monitor_thread.daemon = True
self._monitor_thread.start()
def read(self):
L_X = self.LeftJoystickX
L_Y = self.LeftJoystickY
R_X = self.RightJoystickX
R_Y = self.RightJoystickY
LT = self.LeftTrigger
RT = self.RightTrigger
LB = self.LeftBumper
RB = self.RightBumper
A = self.A
X = self.X
Y = self.Y
B = self.B
LTh = self.LeftThumb
RTh = self.RightThumb
Back = self.Back
Start = self.Start
# dpad does not work
DP_L = self.LeftDPad
DP_R = self.RightDPad
DP_U = self.UpDPad
DP_D = self.DownDPad
# return [L_X, L_Y, R_X, R_Y, RT]
return [L_X, L_Y, R_X, R_Y, LT, RT, LB, RB, A, X, Y, B, LTh, RTh, Back, Start]
# return [L_X, L_Y, R_X, R_Y, RT]
def _monitor_controller(self):
while True:
events = get_gamepad()
for event in events:
if event.code == 'ABS_Y':
self.LeftJoystickY = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_X':
self.LeftJoystickX = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_RY':
self.RightJoystickY = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_RX':
self.RightJoystickX = event.state / XboxController.MAX_JOY_VAL # normalize between -1 and 1
elif event.code == 'ABS_Z':
self.LeftTrigger = event.state / XboxController.MAX_TRIG_VAL # normalize between 0 and 1
elif event.code == 'ABS_RZ':
self.RightTrigger = event.state / XboxController.MAX_TRIG_VAL # normalize between 0 and 1
elif event.code == 'BTN_TL':
self.LeftBumper = event.state
elif event.code == 'BTN_TR':
self.RightBumper = event.state
elif event.code == 'BTN_SOUTH':
self.A = event.state
elif event.code == 'BTN_NORTH':
self.X = event.state
elif event.code == 'BTN_WEST':
self.Y = event.state
elif event.code == 'BTN_EAST':
self.B = event.state
elif event.code == 'BTN_THUMBL':
self.LeftThumb = event.state
elif event.code == 'BTN_THUMBR':
self.RightThumb = event.state
elif event.code == 'BTN_SELECT':
self.Back = event.state
elif event.code == 'BTN_START':
self.Start = event.state
elif event.code == 'BTN_TRIGGER_HAPPY1':
self.LeftDPad = event.state
elif event.code == 'BTN_TRIGGER_HAPPY2':
self.RightDPad = event.state
elif event.code == 'BTN_TRIGGER_HAPPY3':
self.UpDPad = event.state
elif event.code == 'BTN_TRIGGER_HAPPY4':
self.DownDPad = event.state
class Data(object):
def __init__(self):
self._X = np.load("data/X.npy")
self._y = np.load("data/y.npy")
self._epochs_completed = 0
self._index_in_epoch = 0
self._num_examples = self._X.shape[0]
@property
def num_examples(self):
return self._num_examples
def next_batch(self, batch_size):
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._X[start:end], self._y[start:end]
def load_sample(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
joystick_values = np.loadtxt(sample + '/data.csv', delimiter=',', usecols=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16))
return image_files, joystick_values
def load_mini_sample(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
joystick_values = np.loadtxt(sample + '/data.csv', delimiter=',', usecols=(1,2,3,4,5,6,9,10))
return image_files, joystick_values
def load_categorical_sample(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
joystick_values = np.loadtxt(sample + '/data.csv', delimiter=',', usecols=(17,))
return image_files, joystick_values
def load_racing_sample(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
joystick_values = np.loadtxt(sample + '/data.csv', delimiter=',', usecols=(1,5,6))
return image_files, joystick_values
def load_steering_sample(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
joystick_values = np.loadtxt(sample + '/data.csv', delimiter=',', usecols=(1,))
return image_files, joystick_values
def load_imgs(sample):
image_files = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
return image_files
def load_balanced_sample(samples, col="LX", bias=0.2):
"""
Samples: List of all CSV files to concat and balance
Col: Column to balance by. By default, "LX"
"""
cols = ["Name", "LX", "LY", "RX", "RY", "LT", "RT"]
for i in range(10):
cols.append(str(i))
dataframes = [pd.read_csv(sample) for sample in samples]
for f in dataframes:
f.columns = cols
concat = pd.concat(dataframes, axis=0, ignore_index=True)
print(concat)
concat.hist(column=["LX", "RT"], bins=200)
plt.show()
df = concat
# find concat fraction to chop off (assume left and right are equal)
fract = df[(df[col] > 0.1) & (df[col] < 1.0)].shape[0]/df.shape[0]
fract = fract * bias
new_df = df[(df[col] < -0.1) | (df[col] > 0.1) | (abs(df[col]) < 0.1).sample(frac=fract)]
new_df.hist(column=["LX", "RT"], bins=200)
print(new_df)
plt.show()
return new_df["Name"], new_df[col]
def ask_for_samples():
from train import load_data_from_samples
# ask for samples
samples = eval(input("Enter sample paths to load: "))
# load data
return load_data_from_samples(samples, augment=False)
def plot_data(y_pth, predictions=False, model_pth=None, x_pth=None, categorical=False):
categorical = True if categorical == "y" else False
# check if model exists
if os.path.exists(model_pth):
print(f"Model {model_pth} found")
else:
raise FileNotFoundError(f"Model {model_pth} not found")
# load data
# X = np.load(x_pth)
if input("Load data from samples? (y/n): ") == "y":
print("Loading data from samples...")
X, y = ask_for_samples()
else:
print("Loading data from NPY files...")
y = np.load(y_pth)
# load X data
X = np.load(x_pth)
if (not categorical) and input("Mediapipe? (y/n): ") == "y":
mediapipe = True
else:
mediapipe = False
# plot y data
plt.plot(y)
if categorical:
print("Categorical data")
else:
print("Continuous data")
# plot predictions
if predictions and (not categorical) and (not mediapipe):
from train import commaai_model, create_model, create_new_model
from train_categorical import create_efficientnet_model
# load model
model = create_model(keep_prob=1.0)
# model = create_efficientnet_model()
model.load_weights(model_pth)
# predict
y_preds = []
t0 = time.perf_counter()
for i, x in enumerate(X):
print(i, "/", len(X)-1, end="\r")
y_pred = model.predict(np.expand_dims(x, axis=0), batch_size=1)[0]
y_preds.append(y_pred)
t1 = time.perf_counter()
print("time per prediction:", (t1-t0)/len(X), "seconds")
# plot
plt.plot(y_preds)
elif predictions and categorical and (not mediapipe):
from train import categorical_model, autoencoder_model, categorical_model_predict
import tensorflow as tf
# cuda memory growth
gpus = tf.config.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu,True)
# load model
model = categorical_model()
# model = autoencoder_model()
model.load_weights(model_pth)
# predict
y_preds = []
t0 = time.perf_counter(); y_pred = 0
for i, x in enumerate(X):
print(i, "/", len(X)-1, y_pred, end="\r")
y_pred = categorical_model_predict(model, np.expand_dims(x, axis=0))
y_preds.append(y_pred)
t1 = time.perf_counter()
print("time per prediction:", (t1-t0)/len(X), "seconds")
# plot
plt.plot(y_preds)
elif mediapipe:
# load tflite model
import mediapipe as mp
from mediapipe.tasks import python
from mediapipe.tasks.python.components import processors
from mediapipe.tasks.python import vision
print("Running mediapipe model...")
# STEP 2: Create an ImageClassifier object.
base_options = python.BaseOptions(model_asset_path=model_pth)
options = vision.ImageClassifierOptions(
base_options=base_options, max_results=4)
classifier = vision.ImageClassifier.create_from_options(options)
# image = mp.Image.create_from_file(image_name)
# classification_result = classifier.classify(image)
# predict
y_preds = []
t0 = time.perf_counter()
for i, x in enumerate(X):
print(i, "/", len(X)-1, end="\r")
# predict
# convert from float 1.0 to uint8 255
x = (x*255).astype(np.uint8)
# debug show image
# plt.imshow(x)
# plt.show()
image = mp.Image(image_format=mp.ImageFormat.SRGB, data=x)
classification_result = classifier.classify(image).classifications[0]
# for i in classification_result.categories:
# print(i)
# convert idx to float
y_pred = float(classification_result.categories[0].index) / 7.0 - 1.0
y_preds.append(y_pred)
t1 = time.perf_counter()
print("time per prediction:", (t1-t0)/len(X), "seconds")
# plot
plt.plot(y_preds)
else:
raise ValueError(f'Invalid arguments: predictions={predictions}, categorical={categorical}, mediapipe={mediapipe}')
plt.show()
def seq_plotpreds(data_pths, model_pth, categorical=True, seq_len=5):
# check if model exists
if os.path.exists(model_pth):
print(f"Model {model_pth} found")
else:
raise FileNotFoundError(f"Model {model_pth} not found")
seq_len = int(seq_len)
print(data_pths)
x, y = load_data_from_samples(eval(data_pths), augment=False)
# open model
from train import sequence_categorical_model
model = sequence_categorical_model(seq_len=seq_len)
model.load_weights(model_pth)
# predict
y_preds = []
t0 = time.perf_counter()
for i in range(seq_len, len(x)):
print(i, "/", len(x)-1, end="\r")
# take last seq_len images
y_pred = model.predict(np.expand_dims(x[i-seq_len:i], axis=0), batch_size=1)[0]
# covert from idx to float
y_pred = np.argmax(y_pred) / 7.0 - 1.0
y_preds.append(y_pred)
t1 = time.perf_counter()
print("time per prediction:", (t1-t0)/len(x), "seconds")
# plot
plt.plot(y_preds)
plt.plot(y[seq_len:])
plt.show()
def show_pic(x_pth, idx=0):
# load only one image from samples
samples = eval(input("Enter sample paths to load: "))
# do NOT load entire array - find the image path and load it
image_files = []
for sample in samples:
print(sample, end="\r")
x = np.loadtxt(sample + '/data.csv', delimiter=',', dtype=str, usecols=(0,))
for a in x:
image_files.append(a)
print(f'[DEBUG] {len(image_files)} images found')
# load image
img = imread(image_files[idx])
# show image
plt.imshow(img)
plt.show()
# training data viewer
def viewer(sample):
image_files, joystick_values = load_sample(sample)
plotData = []
plt.ion()
plt.figure('viewer', figsize=(16, 6))
for i in range(len(image_files)):
# joystick
print(i, " ", joystick_values[i,:])
# format data
plotData.append( joystick_values[i,:] )
if len(plotData) > 30:
plotData.pop(0)
x = np.asarray(plotData)
# image (every 3rd)
# if (i % 3 == 0):
plt.subplot(121)
image_file = image_files[i]
img = mpimg.imread(image_file)
plt.imshow(img)
# plot
plt.subplot(122)
plt.plot(range(i,i+len(plotData)), x[:,0], 'r')
# plt.hold(True)
# plt.plot(range(i,i+len(plotData)), x[:,1], 'b')
# plt.plot(range(i,i+len(plotData)), x[:,2], 'g')
# plt.plot(range(i,i+len(plotData)), x[:,3], 'k')
plt.plot(range(i,i+len(plotData)), x[:,4], 'y')
plt.plot(range(i,i+len(plotData)), x[:,5], 'c')
# plt.plot(range(i,i+len(plotData)), x[:,6], 'm')
# plt.plot(range(i,i+len(plotData)), x[:,7], 'skyblue')
# plt.plot(range(i,i+len(plotData)), x[:,8], 'springgreen')
# plt.plot(range(i,i+len(plotData)), x[:,9], 'orange')
# plt.plot(range(i,i+len(plotData)), x[:,10], 'maroon')
# plt.plot(range(i,i+len(plotData)), x[:,11], 'peachpuff')
# plt.plot(range(i,i+len(plotData)), x[:,12], 'lime')
# plt.plot(range(i,i+len(plotData)), x[:,13], 'plum')
# plt.plot(range(i,i+len(plotData)), x[:,14], 'navy')
# plt.plot(range(i,i+len(plotData)), x[:,15], 'aqua')
plt.draw()
# plt.hold(False)
plt.pause(0.01) # seconds
i += 1
# prepare training data balanced along axis
# this ensures the "zero" position does not dominate
def balance(samples):
paths = [os.path.normpath(i)+"\\data.csv" for i in glob.glob(samples[0])]
image_files, joystick_values = load_balanced_sample(paths)
X = np.empty(shape=(image_files.size,Sample.IMG_H,Sample.IMG_W,3),dtype=np.uint8)
y = []
for i, filename in enumerate(image_files):
image = imread(filename)
vec = resize_image(image)
X[i] = vec
for val in joystick_values:
y.append(val)
print("Saving to file...")
X = np.asarray(X)
y = np.asarray(y)
print(X.shape)
print(y.shape)
np.save("data/x_sbal", X)
np.save("data/y_sbal", y)
print("Done!")
# prepare training data
def prepare(samples, augment=True):
print(f"Preparing data from {samples[0]}")
y = []
paths = [os.path.normpath(i) for i in glob.glob(samples[0])]
numpics = 0
# for sample in samples:
for sample in paths:
print(sample)
image_files = load_imgs(sample)
numpics += len(image_files)
del sample
del image_files
gc.collect()
print(numpics)
X = np.empty(shape=(numpics,Sample.IMG_H,Sample.IMG_W,3),dtype=np.uint8)
idx = 0 # Current image write index - from 0 to numpics
for sample in paths:
#for sample in samples:
print(f"Processing {sample}")
# load sample
# image_files, joystick_values = load_sample(os.path.normpath(sample))
# load condensed sample
image_files, joystick_values = load_steering_sample(os.path.normpath(sample))
# add joystick values to y
print(f"Joystick values shape {joystick_values.shape}")
y.append(joystick_values)
# load, prepare and add images to X
for image_file in image_files:
image = imread(image_file)
# debug show image
# plt.imshow(image)
# plt.show()
vec = resize_image(image)
# debug show image
# plt.imshow(vec)
# plt.show()
'''
if augment:
## Augmentation
# Mirror image
### if random.choice([True, False]):
### vec = vec[:, ::-1, :] # horizontally mirror image
### y[-1][0] *= -1 # negate steering value
# Crop image (by adding black rectangle to mask extraneous details)
# print(vec.dtype, vec.shape)
# sys.exit(1)
vec = cv2.rectangle(img=vec.astype(np.uint8), pt1=(int(0),int(0)), pt2=(int(480), int(90)), color=[0, 0, 0], thickness=cv2.FILLED)
# Add random jitter to steering values
### y[-1][0] += np.random.normal(loc=0, scale=0.01)
# TODO Add Bias
'''
X[idx] = vec
idx += 1
del image
gc.collect()
# try to do some memory management
# delete the current sample data since it has been appended to x and y
del image_files
del joystick_values
gc.collect()
print("Saving to file...")
X = np.asarray(X)
y = np.concatenate(y)
np.save("data/x_f10s", X)
np.save("data/y_f10s", y)
print("Done!")
print(X.shape)
print(np.asarray(y).shape)
return
def load_data_from_samples(paths, augment=True, debug=False, generator=False):
INPUT_SHAPE = (135, Sample.IMG_W, Sample.IMG_D)
# for each path, load y data from data.csv
# 1st column is picture path, 2nd column is steering angle
# determine number of samples
num_samples = 0
for path in paths:
with open(path + "/data.csv") as f:
num_samples += sum(1 for _line in f)
# initialize x and y arrays
if augment:
num_samples *= 2 # left/right
x = np.empty((num_samples, INPUT_SHAPE[0], INPUT_SHAPE[1], INPUT_SHAPE[2]), dtype=np.float32)
y = np.empty((num_samples), dtype=np.float32)
# load data from each path
i = 0
for path in paths:
with open(path + "/data.csv") as f:
for line in f:
tokens = line.split(",")
# print(f"[DEBUG] {path + '/' + tokens[0]}")
img = cv2.imread(tokens[0])
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# resize image
img = cv2.resize(img, (INPUT_SHAPE[1], INPUT_SHAPE[0]))
img = img.astype(np.float32)
img /= 255.0
if debug and i % 500 == 0:
plt.imshow(img)
plt.title(tokens[1]+" "+str(i))
plt.show()
x[i] = img
y[i] = float(tokens[1])
if augment:
# flip image
img = cv2.flip(img, 1)
# new index to save at is i + num_samples/2
x[i + num_samples//2] = img
y[i + num_samples//2] = -float(tokens[1])
if debug and i % 500 == 0:
plt.imshow(img)
new_steering_str = "F"+str(-float(tokens[1]))
plt.title(new_steering_str+" "+str(i + num_samples//2))
plt.show()
print(f"sample {i} of {num_samples}", end="\r")
i += 1
# if generator:
# yield x[i], y[i]
# if not generator:
# return x, y
return x, y
def build_sorted_dataset(dataset_path: str, samples_paths: list):
# build sorted dataset at samples/path
# for each sample, put into a folder based on the steering value
# 15 buckets from -1 to 1
# closest value goes in that bucket
# load samples
x, y = load_data_from_samples(samples_paths)
# create folders
buckets = [i/7 for i in range(-7, 8)]
path_suffixes = [chr(int(i*7 + 72)) for i in buckets]
# fix dataset_path
dataset_path = os.path.normpath(dataset_path)
for suffix in path_suffixes:
os.makedirs(os.path.join(dataset_path, suffix))
# sort data
# hist = plt.hist(y, bins=14)
print("Sorting data...")
for i, img in enumerate(x):
print(i, "/", len(x)-1, end="\r")
# find closest bucket
closest = min(buckets, key=lambda x:abs(x-y[i])) # minimize distance between bucket and steering value
# save image to bucket
# debug
# plt.imshow(img)
# plt.title(f"{i} {y[i]} {closest} {np.max(img)}")
# plt.show()
# flip image to BGR for cv2
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(dataset_path, chr(int(closest*7 + 72)), str(i)+".jpg"), img*255)
# plt.show()
if __name__ == '__main__':
if sys.argv[1] == 'viewer':
viewer(sys.argv[2])
elif sys.argv[1] == 'prepare':
prepare(sys.argv[2:], augment=False)
elif sys.argv[1] == 'balance':
balance(sys.argv[2:])
elif sys.argv[1] == 'plot':
plot_data(y_pth=sys.argv[2])
elif sys.argv[1] == 'plotpredictions':
plot_data(y_pth=sys.argv[2], predictions=True, model_pth=sys.argv[3], x_pth=sys.argv[4], categorical=(sys.argv[5]))
elif sys.argv[1] == 'seqplotpreds':
seq_plotpreds(sys.argv[2], sys.argv[3], categorical=True, seq_len=sys.argv[4])
elif sys.argv[1] == 'show':
show_pic(sys.argv[2], int(sys.argv[3]))
elif sys.argv[1] == 'sort':
build_sorted_dataset(sys.argv[2], sys.argv[3:])
else:
print("(viewer|prepare|balance|plot|plotpredictions|seqplotpreds|show|sort)")