-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathindex.js
333 lines (292 loc) · 12.5 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/pose
// the link to your model provided by Teachable Machine export panel
const URL2 = "https://teachablemachine.withgoogle.com/models/9o5NXD5r/"; // Lunge
// const URL2 = "https://aiden.blob.core.windows.net/aidenmodels/"; // 2.0 lunge
// const URL1 = "https://teachablemachine.withgoogle.com/models/nFctljBl/"; // Back bend
const URL1 = "https://teachablemachine.withgoogle.com/models/w_q11QNp/"; // DEMO
// const URL1 = "https://aiden.blob.core.windows.net/aidenmodels/"; // 2.0 metadata.json
let model, model2, webcam, ctx, labelContainer, maxPredictions;
var bar_colours = [
"bg-success",
"bg-warning",
"bg-info",
"bg-danger",
"bg-success",
"bg-info",
"bg-warning",
"bg-danger"
];
let no_stretch = 1;
const STREAK = 40;
const CONFIDENCE_BENCHMARK = 0.5;
var currentPosture_and_stream = { Posture: "Unsure", Streak: 1 };
var lastCall = "Unsure";
var flag = true;
async function init(URLno) {
var URL = URL1;
if (URLno == 1) {
URL = URL2;
}
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmPose.loadFromFiles() in the API to support files from a file picker
model = await tmPose.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmPose.Webcam(parent.innerWidth, parent.innerHeight, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
webcam.play();
window.requestAnimationFrame(loop);
// append/get elements to the DOM
const canvas = document.getElementById("canvas");
canvas.width = parent.innerWidth;
canvas.height = parent.innerHeight;
ctx = canvas.getContext("2d");
labelContainer = document.getElementById("label-container");
for (let i = 0; i < maxPredictions; i++) {
// and class labels
labelContainer.appendChild(document.createElement("div"));
}
// var startmsg = new SpeechSynthesisUtterance(
// "Starting Your Exercises. Beginning with Back Bend Stretch"
// );
web.addMessage("Starting Your Exercises. Beginning with Back Bend Stretch");
web.processMessages();
if (URLno == 1) {
startmsg = new SpeechSynthesisUtterance(
"."
);
web.addMessage("Second Exercise. Lunge Rotate Stretch");
web.processMessages();
}
window.speechSynthesis.speak(startmsg);
var el = document.getElementById("filler-label-container");
el.remove();
var bel = document.getElementById("speech");
bel.remove();
document.getElementById("sequence").innerHTML = `<div class="scrollmenu">
<a href="#BackBend" id="stretch1" >Back Bend</a>
<a href="#Lunge" id="stretch2" >Lunge Rotate</a>
<a href="#calf" id="stretch3" >Calf Tense</a>
<a href="#about" id="stretch4">Shoulder Relax</a>
<a href="#support">Neck Soother</a>
<a href="#blog">Ankle Rolling</a>
<a href="#base">Chest Expand</a>
</div>`;
console.log("Hello World");
if (URLno == 1) {
document.getElementById("sequence").sequence.innerHTML = `<div class="scrollmenu">
<a href="#BackBend" id="stretch1" >Back Bend</a>
<a href="#Lunge" id="stretch1" >Lunge Rotate</a>
<a href="#calf" id="stretch3" >Calf Tense</a>
<a href="#about" id="stretch4">Shoulder Relax</a>
<a href="#support">Neck Soother</a>
<a href="#blog">Ankle Rolling</a>
<a href="#base">Chest Expand</a>
</div>`;
}
}
async function loop(timestamp) {
webcam.update(); // update the webcam frame
await predict();
window.requestAnimationFrame(loop);
}
async function predict() {
let { pose, posenetOutput } = await model.estimatePose(webcam.canvas);
let prediction = await model.predict(posenetOutput);
// Prediction #1: run input through posenet
// estimatePose can take in an image, video or canvas html element
// Prediction 2: run input through teachable machine classification model
// Prediction 2: run input through teachable machine classification model
for (let i = 0; i < maxPredictions; i++) {
prediction[i].className =
prediction[i].className == "Knees too bent"
? "Knees Too Bent"
: prediction[i].className;
const classPrediction =
prediction[i].className +
": " +
(prediction[i].probability * 100).toFixed(0) +
"%" +
`<div class="progress">
<div class="progress-bar progress-bar-striped ${
bar_colours[i]
}" role="progressbar" style="width: ${(
prediction[i].probability * 100
).toFixed(0)}%" aria-valuenow=${(
prediction[i].probability * 100
).toFixed(0)} aria-valuemin="0" aria-valuemax="100"></div>
</div>`;
labelContainer.childNodes[i].innerHTML = classPrediction;
if (prediction[i].probability > CONFIDENCE_BENCHMARK) {
if (currentPosture_and_stream.Posture == prediction[i].className) {
console.log(
currentPosture_and_stream.Streak,
lastCall,
prediction[i].className
);
if (currentPosture_and_stream.Streak > STREAK) {
console.log("Mumba", lastCall, no_stretch);
if (lastCall != prediction[i].className) {
console.log(
"Has been " +
prediction[i].className +
" " +
STREAK +
" times in a row"
);
// Current Status
footer.innerHTML = "Status: " + prediction[i].className;
lastCall = prediction[i].className;
var msg = new SpeechSynthesisUtterance(
prediction[i].className
);
web.addMessage(prediction[i].className);
console.log(prediction[i].className)
web.processMessages();
// window.speechSynthesis.speak(msg);
} else {
if (no_stretch == 1 && lastCall == "Correct Bend") {
console.log(msg, "yeeepo");
var msg = new SpeechSynthesisUtterance(
"."
);
// window.speechSynthesis.speak(msg);
web.addMessage("Hold there for 10 seconds. Finished Back Bend");
web.processMessages();
flag = false;
console.log("start" + no_stretch);
document.getElementById(
"stretch" + no_stretch
).style.background = "green";
no_stretch += 1;
init(1);
} else if (
no_stretch == 2 &&
lastCall == "Correct Lunge"
) {
var msg = new SpeechSynthesisUtterance(
"Finished Lunge Rotate"
);
window.speechSynthesis.speak(msg);
flag = false;
console.log("start" + no_stretch);
document.getElementById(
"stretch" + no_stretch.toString()
).style.background = "green";
no_stretch += 1;
} else if (no_stretch == 3) {
var msg = new SpeechSynthesisUtterance(
"Finished Stretches. This continues your 3 day streak"
);
window.speechSynthesis.speak(msg);
no_stretch += 1;
}
}
} else {
console.log("streak", currentPosture_and_stream.Streak);
currentPosture_and_stream.Streak += 1;
}
} else {
console.log("Yeahhh");
currentPosture_and_stream.Posture = prediction[i].className;
currentPosture_and_stream.Streak = 0;
console.log(currentPosture_and_stream.Posture);
}
}
}
// finally draw the poses
drawPose(pose);
}
function drawPose(pose) {
ctx.drawImage(webcam.canvas, 0, 0);
// draw the keypoints and skeleton
if (pose) {
const minPartConfidence = 0.5;
tmPose.drawKeypoints(pose.keypoints, minPartConfidence, ctx);
tmPose.drawSkeleton(pose.keypoints, minPartConfidence, ctx);
}
}
try {
let started = true;
window.SpeechRecognition =
window.webkitSpeechRecognition || window.SpeechRecognition;
let finalTranscript = "";
let recognition = new window.SpeechRecognition();
recognition.interimResults = true;
recognition.maxAlternatives = 10;
recognition.continuous = true;
recognition.onresult = event => {
let interimTranscript = "";
for (let i = event.resultIndex, len = event.results.length;i < len;i++) {
let transcript = event.results[i][0].transcript;
if (transcript.includes("begin")||transcript.toLowerCase().includes("shuru")) {
if (started) {
started = false;
init(0);
console.log("Begin exercises");
// Removes the div with the 'div-02' id}}
}
}
if (event.results[i].isFinal) {
finalTranscript += transcript;
} else {
interimTranscript += transcript;
}
console.log(finalTranscript);
if (transcript.includes("stop")|| transcript.includes("ruk ja")) {
console.log("TMKC");
// recognition.abort();
// recognition.stop();
// recognition.getTracks().forEach(function(track) {
// track.stop();
// alert(track);
// });
webcam.stop();
document.getElementById("Camera").style.visibility="hidden";
}
if (transcript.includes("leaderboard")) {
// recognition.abort();
// recognition.stop();
// recognition.getTracks().forEach(function(track) {
// track.stop();
// alert(track);
// });
window.location.href = "/leaderboard.html";
}
}
speech.innerHTML =
'<i style="color:#ddd;">' + interimTranscript + "</>";
finalTranscript + '<i style="color:#ddd;">' + interimTranscript + "</>";
};
recognition.start();
started=true;
} catch (err) {
alert(
"Unfortunately, this browser/OS combination is unsupported. For best results, use Google Chrome on Desktop or Android."
);
}
async function postData(url = '', data = {}) {
// Default options are marked with *
const response = await fetch(url, {
method: 'POST', // *GET, POST, PUT, DELETE, etc.
mode: 'cors', // no-cors, *cors, same-origin
cache: 'no-cache', // *default, no-cache, reload, force-cache, only-if-cached
credentials: 'same-origin', // include, *same-origin, omit
headers: {
'Content-Type': 'application/json'
// 'Content-Type': 'application/x-www-form-urlencoded',
},
redirect: 'follow', // manual, *follow, error
referrerPolicy: 'no-referrer', // no-referrer, *client
body: JSON.stringify(data) // body data type must match "Content-Type" header
});
return await response.json(); // parses JSON response into native JavaScript objects
}
postData('https://api.cognitive.microsofttranslator.com/translate?api-version=3.0', { "Text":"I would really like to drive your car around the block a few times."})
.then((data) => {
console.log(data); // JSON data parsed by `response.json()` call
});