-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexo-examp.tex
282 lines (247 loc) · 12 KB
/
exo-examp.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
\section{Exo-Planet Examples} \label{sec:app}
In this section, we perform the proposed AAIS method to deal with
two real RV data set.
\subsection{Star HD73526}
This data set contains 18 data components, and were claimed to
support an orbit of $190.5\pm3.0$ days \citep{tinney2003four}.
\cite{gregory2005bayesian} did a Bayesian re-analysis on this data
set using a parallel tempering MCMC algorithm, and reported three
possible orbits, with periods $127.88_{-0.09}^{+0.37}$,
$190.4_{-2.1}^{+1.8}$ and $376.2_{-4.3}^{+1.4}$ days, respectively.
\cite{gregory2005bayesian} also discussed the possibility of having
an additional planet, and reported that the Bayes factor is less
than 1 when comparing $\mathcal{M}_2$ with the $\mathcal{M}_1$.
We use the proposed AAIS algorithm to deal with $\mathcal{M}_0$,
$\mathcal{M}_1$ and $\mathcal{M}_2$, respectively. The marginal
likelihood estimation result is summarized in Table
\ref{marginal_likelihood_data1}. These estimates are reliable
indicated by their corresponding \ESS$/N$. The resulting Bayes
factors are shown in Table \ref{Bayes_factor_data1}. As indicated by
the result, this data set support the one-planet hypothesis, which
coincides the conclusions made by
\cite{tinney2003four,gregory2005bayesian}.
\begin{table}
\begin{tabular}{c|c|c}
& Marginal Likelihood & \ESS$/N$\\
\hline $\mathcal{M}_0$ & $5.9013\times10^{-50}\pm5.1325\times10^{-52}$ & 0.9320\\
\hline $\mathcal{M}_1$ & $4.4886\times10^{-41}\pm3.2093\times10^{-42}$ & 0.5698\\
\hline $\mathcal{M}_2$ & $1.5511\times10^{-42}\pm3.2878\times10^{-43}$ & 0.3458\\
\hline
\end{tabular}
\caption{HD73526 \cite{tinney2003four} Data Case. The calculated
marginal likelihoods}\label{marginal_likelihood_data1}
\end{table}
\begin{table}
\begin{tabular}{c|c}
\BF$\{\mathcal{M}_1:\mathcal{M}_0\}$ & \BF$\{\mathcal{M}_2:\mathcal{M}_1\}$\\
\hline $7.606\times10^8$& 0.03456\\
\hline
\end{tabular}
\caption{HD73526 \citep{tinney2003four} Data Case. The calculated
Bayes Factors}\label{Bayes_factor_data1}
\end{table}
Specifically for $\mathcal{M}_1$, we show the posterior samples
(equally weighted by resampling) in Fig. \ref{fig:scatter_1p_data1}.
We obtain two modes in $P$, that are $P_1=190.1_{-1.5}^{+2.2}$ and
$P_2=375.5_{-2.5}^{+2.0}$, respectively.
\begin{figure}[!htb]
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/scatter_1p_data1.png}}
\caption{HD73526 \cite{tinney2003four} Data Case. Scatter plot of
the posterior samples of
$\mathcal{M}_1$}\label{fig:scatter_1p_data1}
\end{figure}
\subsection{Star HD73526}
This data set contains 30 RV data components and was claimed to have
two planets \citep{tinney20062}.
We calculate the marginal likelihoods using the proposed AAIS
algorithm, and the result is shown in Table
\ref{marginal_likelihood_data2}. Indicated by the criterion
\ESS$/N$, we deem that the result is reliable. The resulting Bayes
factors can be seen in Table \ref{Bayes_factor_data2}. So our result
supports the argument in \cite{tinney20062}$-$there are two planets
underlying this data set.
\begin{table}
\begin{tabular}{c|c|c}
& Marginal Likelihood & \ESS$/N$\\
\hline $\mathcal{M}_0$ & $8.9566\times10^{-77}\pm1.0852\times10^{-78}$ & 0.9510\\
\hline $\mathcal{M}_1$ & $5.8519\times10^{-70}\pm1.7077\times10^{-71}$ & 0.6545\\
\hline $\mathcal{M}_2$ & $4.8122\times10^{-65}\pm1.4284\times10^{-66}$ & 0.2034 \\
\hline
\end{tabular}
\caption{HD73526 \citep{tinney20062} Data Case. The calculated
marginal likelihoods}\label{marginal_likelihood_data2}
\end{table}
\begin{table}
\begin{tabular}{c|c}
\BF$\{\mathcal{M}_1:\mathcal{M}_0\}$ & \BF$\{\mathcal{M}_2:\mathcal{M}_1\}$\\
\hline $6.534\times10^6$& $8.233\times10^4$\\
\hline
\end{tabular}
\caption{HD73526 \citep{tinney20062} Data Case. The calculated
Bayes Factors}\label{Bayes_factor_data2}
\end{table}
The posterior samples (equally weighted by resampling) corresponding
to $\mathcal{M}_1$ is shown in Fig.\ref{fig:scatter_1p_data2}, and
the algorithm again captures two modes in $P$, that are
$P_1=193.1162_{-3.7}^{+2.1}$ and $P_2=374.8732_{-5.8}^{+6.9}$.
When dealing with $\mathcal{M}_2$, we still restrict the period of
the first planet to be smaller than that of the second planet.
Fig.\ref{fig:scatter_2p_data2} shows the posterior samples of
$\mathcal{M}_2$. Given these posterior samples, we get the periods
of the two planets, that are $P_1=187.9379_{-0.8}^{+2.1}$ and
$P_2=377.3030_{-4.5}^{+5.2}$, respectively.
\begin{figure}[!htb]
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/scatter_1p_data2.png}}
\caption{HD73526 \citep{tinney20062} Data Case. Scatter plot of the
posterior samples of $\mathcal{M}_1$}\label{fig:scatter_1p_data2}
\end{figure}
\begin{figure}[!htb]
\begin{tabular}{c}
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/scatter1_2p_data2.png}\includegraphics[width=4in,height=3.2in]{Fig/scatter2_2p_data2.png}}\\
\end{tabular}
\caption{HD73526 \cite{tinney20062} Data Case. Scatter plot of the
posterior samples of $\mathcal{M}_2$. Left: Scatter plot of the
posterior samples of the first planet parameter; Right: Scatter plot
of the posterior samples of the second planet parameter}
\label{fig:scatter_2p_data2}
\end{figure}
Given samples from the posterior, we can easily get the minimum mean
squared estimate (MMSE) of the RV at any given time, and then plot
the RV curve. In Fig.\ref{fig:rv_comparison_data2}, we plot the
estimated RV curves on basis of $\mathcal{M}_0$, $\mathcal{M}_1$ and
$\mathcal{M}_2$, respectively, meanwhile the real RV observations
are depicted there for reference. As in shown, the RV estimation
yielded by $\mathcal{M}_2$ fits the real data best.
\begin{figure}[!htb]
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/rv_comparison_data2.png}}
\caption{Measured velocities (filled circles) vs. time for HD73526
\cite{tinney20062}. Error bars only includes internal uncertainties.
The curves are MMSE estimates of the RV yielded by $\mathcal{M}_0$,
$\mathcal{M}_1$ and $\mathcal{M}_2$,
respectively}\label{fig:rv_comparison_data2}
\end{figure}
\subsection{The HD217107 Data Case}
Star HD217107 was claimed to have two planets \citep{vogt2005five}.
We analyze the observed RV data for HD217107 using our AAIS method,
the calculated marginal likelihoods are shown in Table
\ref{marginal_likelihood_HD217107}, each corresponding to a
sufficiently big value of \ESS$/N$. The resulting Bayes factors can
be seen in Table \ref{Bayes_factor_HD217107}. It's shown that
$\mathcal{M}_2$ beats both $\mathcal{M}_0$ and $\mathcal{M}_1$.
\begin{table}
\begin{tabular}{c|c|c}
& Marginal Likelihood & \ESS$/N$\\
\hline $\mathcal{M}_0$ & $3.6492\times10^{-168}\pm7.0150\times10^{-169}$ & 0.9644\\
\hline $\mathcal{M}_1$ & $3.7389\times10^{-141}\pm0.6077\times10^{-142}$ & 0.6448\\
\hline $\mathcal{M}_2$ & $3.0897\times10^{-108}\pm1.0011\times10^{-109}$ & 0.4119 \\
\hline
\end{tabular}
\caption{HD217107 \citep{vogt2005five} Data Case. The calculated
marginal likelihoods}\label{marginal_likelihood_HD217107}
\end{table}
\begin{table}
\begin{tabular}{c|c}
\BF$\{\mathcal{M}_1:\mathcal{M}_0\}$ & \BF$\{\mathcal{M}_2:\mathcal{M}_1\}$\\
\hline $1.025\times10^{27}$& $8.264\times10^{32}$\\
\hline
\end{tabular}
\caption{HD217107 \citep{vogt2005five} Data Case. The calculated
Bayes Factors}\label{Bayes_factor_HD217107}
\end{table}
\subsection{The HD37124 Data Case}
Star HD37124 was claimed to have three planets \citep{vogt2005five}.
We analyze the associated RV data set using our AAIS method, the
marginal likelihoods calculated by our AAIS algorithm are shown in
Table \ref{marginal_likelihood_37124}. Indicated by the criterion
\ESS$/N$, the results are reliable. The resulting Bayes factors can
be seen in Table \ref{Bayes_factor_37124}, which support the
conclusion of \cite{tinney20062}, i.e. this data set supports the
three-planet hypothesis.
\begin{table}
\begin{tabular}{c|c|c}
& Marginal Likelihood & \ESS$/N$\\
\hline $\mathcal{M}_0$ & $2.0889\times10^{-110}\pm2.1857\times10^{-112}$ & 0.9427\\
\hline $\mathcal{M}_1$ & $1.0717\times10^{-106}\pm1.3077\times10^{-107}$ & 0.1737\\
\hline $\mathcal{M}_2$ & $1.9830\times10^{-97}\pm1.1451\times10^{-98}$ & 0.1798 \\
\hline $\mathcal{M}_3$ & $2.9228\times10^{-84}\pm1.2563\times10^{-85}$ & 0.1305 \\
\hline
\end{tabular}
\caption{HD37124 \citep{vogt2005five} Data Case. The calculated
marginal likelihoods}\label{marginal_likelihood_37124}
\end{table}
\begin{table}
\begin{tabular}{c|c|c}
\BF$\{\mathcal{M}_1:\mathcal{M}_0\}$ &\BF$\{\mathcal{M}_2:\mathcal{M}_1\}$ & \BF$\{\mathcal{M}_3:\mathcal{M}_2\}$\\
\hline $5.13\times10^3$ & $1.850\times10^9$ & $1.474\times10^{13}$\\
\hline
\end{tabular}
\caption{HD37124 \citep{vogt2005five} Data Case. The calculated
Bayes Factors}\label{Bayes_factor_37124}
\end{table}
In Fig.\ref{fig:hd37124_fit}, we plot the estimated RV curves on
basis of $\mathcal{M}_1$, $\mathcal{M}_2$ and $\mathcal{M}_3$,
respectively, where the real RV observations is also depicted for
reference. As is shown, the RV estimation yielded by $\mathcal{M}_3$
fits the real data best.
\begin{figure}[!htb]
\begin{tabular}{c}
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/hd37124_1p_fit.png}\includegraphics[width=4in,height=3.2in]{Fig/hd37124_2p_fit.png}}\\
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/hd37124_3p_fit.png}}
\end{tabular}
\caption{Measured velocities (filled circles) vs. time for HD37124
\cite{tinney20062}. Error bars only includes internal uncertainties.
The MMSE estimates of the RV curves yielded by using
$\mathcal{M}_1$, $\mathcal{M}_2$ and $\mathcal{M}_3$ are shown in
the top left, top right and the bottom panels, respectively.}
\label{fig:hd37124_fit}
\end{figure}
\subsection{The 47 Ursae Majoris (47 UMa) Data Case}
This 47 UMa data recently was analyzed in
\cite{gregory2010bayesian}.
We analyze the associated RV data set using our AAIS method, the
marginal likelihoods calculated by our AAIS algorithm are shown in
Table \ref{marginal_likelihood_uma47}. We obtain reliable estimates
for $\mathcal{M}_0$, $\mathcal{M}_1$ and $\mathcal{M}_2$, while the
estimate for $\mathcal{M}_3$ is unreliable, the \ESS$/N$ is 0.0089,
which is not big enough. Indicated by the criterion \ESS$/N$, the
results are reliable. So we argue that this data set supports
$\mathcal{M}_2$ more than $\mathcal{M}_0$ and $\mathcal{M}_1$, but
we are not sure about the relative strength between $\mathcal{M}_2$
and $\mathcal{M}_3$. \cite{gregory2010bayesian} concluded that this
data set has three planets, however, gave an much ambiguous estimate
for the third planet's period.
\begin{table}
\begin{tabular}{c|c|c}
& Marginal Likelihood & \ESS$/N$\\
\hline $\mathcal{M}_0$ & $2.0198\times10^{-1004}\pm9.2572\times10^{-1006}$ & 0.1002\\
\hline $\mathcal{M}_1$ & $3.4400\times10^{-896}\pm3.10\times10^{-897}$ & 0.5643\\
\hline $\mathcal{M}_2$ & $1.3500\times10^{-816}\pm1.77\times10^{-817}$ & 0.3324 \\
\hline $\mathcal{M}_3$ & $2.8970\times10^{-825}\pm9.1623\times10^{-825}$ & 0.0089 \\
\hline
\end{tabular}
\caption{uma47 \citep{gregory2010bayesian} Data Case. The
calculated marginal likelihoods}\label{marginal_likelihood_uma47}
\end{table}
\begin{table}
\begin{tabular}{c|c|c}
\BF$\{\mathcal{M}_1:\mathcal{M}_0\}$ & \BF$\{\mathcal{M}_2:\mathcal{M}_1\}$ & \BF$\{\mathcal{M}_3:\mathcal{M}_2\}$\\
\hline $1.703\times10^{108}$ & $3.924\times10^{79}$ & $ ?$\\
\hline
\end{tabular}
\caption{uma47 \citep{gregory2010bayesian} Data Case. The
calculated Bayes Factors}\label{Bayes_factor_uma47}
\end{table}
In Fig.\ref{fig:uma47_fit}, we plot the estimated RV curves on basis
of $\mathcal{M}_1$, $\mathcal{M}_2$ respectively, and again the real
RV observations are depicted there for reference. As is shown, the
RV estimation yielded by $\mathcal{M}_2$ fits better.
\begin{figure}[!htb]
\begin{tabular}{c}
\centerline{\includegraphics[width=4in,height=3.2in]{Fig/uma47_1p_fit.png}\includegraphics[width=4in,height=3.2in]{Fig/uma47_2p_fit.png}}
\end{tabular}
\caption{Measured velocities (filled circles) vs. time for the 47
Ursae Majoris (47 UMa) \citep{gregory2010bayesian}. Error bars only
includes internal uncertainties. The MMSE estimates of the RV curves
yielded by using $\mathcal{M}_1$ and $\mathcal{M}_2$ are shown in
the left and the right panels, respectively.} \label{fig:uma47_fit}
\end{figure}