-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFigure3.R
201 lines (192 loc) · 10.4 KB
/
Figure3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
library(dplyr)
library(ggplot2)
library(ppcor)
library(ggpubr)
library(gridExtra)
library(grid)
library(ggExtra)
Gene_noise_raw<-read.table(file="Data/cl7_noise_raw",sep="\t",header=TRUE)
Gene_noise_table<-read.table(file="Data/Gene_noise_table_all_cells",sep="\t",header=TRUE)
Gene_noise_table$intrinsic_noise<-Gene_noise_raw$Intrinsic_noise
Gene_noise_table$extrinsic_noise<-Gene_noise_raw$Extrinsic_noise
Gene_expression_table<-read.table(file="Data/cl7_expression",sep="\t",header=TRUE)
noise_expression_index<-match(Gene_noise_table$Genes,Gene_expression_table$Genes)
Gene_noise_table$expression<-Gene_expression_table$rpkm[noise_expression_index]
Mouse_genes_all<-read.table(file="Data/Mouse_genes_all.txt",sep="\t",header=TRUE)
Mouse_genes_all$TSS<-ifelse(Mouse_genes_all$Strand==1,Mouse_genes_all$Gene.start..bp.,Mouse_genes_all$Gene.end..bp.)
Gene_infor_index<-match(Gene_noise_table$Genes,Mouse_genes_all$Gene.name)
Gene_noise_table$chr<-Mouse_genes_all$Chromosome.scaffold.name[Gene_infor_index]
Gene_noise_table$TSS<-Mouse_genes_all$TSS[Gene_infor_index]
Gene_noise_table$gene_end<-Mouse_genes_all$Gene.end..bp.[Gene_infor_index]
Gene_noise_table$gene_start<-Mouse_genes_all$Gene.start..bp.[Gene_infor_index]
Mouse_expression_all<-read.table(file="Data/mouse_rpkm.txt",sep="\t",header=TRUE,quote="",fill=FALSE)
exp_name_index<-match(rownames(Mouse_expression_all),Mouse_genes_all$Gene.stable.ID)
Mouse_expression_all$geneName<-Mouse_genes_all$Gene.name[exp_name_index]
Mouse_expression_all$mean_exp<-rowMeans(Mouse_expression_all[,1:39])
noise_allexp_index<-match(Gene_noise_table$Genes,Mouse_expression_all$geneName)
Gene_noise_table$exp_all<-Mouse_expression_all$mean_exp[noise_allexp_index]
#Figure 3
Mouse_GO_term<-read.table(file="Data/GO_term_name.txt",sep="\t",header=TRUE,quote="", fill=FALSE)
Mouse_Mito<-Mouse_GO_term%>%
filter(GO.term.name=="mitochondrion")
Mito_index<-match(Gene_noise_table$Genes,Mouse_Mito$Gene.name)
Gene_noise_table$Mito<-(!is.na(Mito_index))
Gene_noise_Mito<-Gene_noise_table%>%
filter(Mito)
Gene_noise_nonMito<-Gene_noise_table%>%
filter(!Mito)
#Fig.3b
Mito_intrinsic_tab<-data.frame(c(Gene_noise_table$intrinsic_residual,Gene_noise_table$intrinsic_residual_controlEx),
c(Gene_noise_table$Mito,Gene_noise_table$Mito),
c(rep("Dint",length(Gene_noise_table$Genes)),rep("Dint_c",length(Gene_noise_table$Genes))))
names(Mito_intrinsic_tab)<-c("int","is_Mito","i_or_c")
Mito_intrinsic_tab$is_Mito[Mito_intrinsic_tab$is_Mito==TRUE]<-"Mitochondrial genes"
Mito_intrinsic_tab$is_Mito[Mito_intrinsic_tab$is_Mito==FALSE]<-"Non-mitochondrial genes"
Mito_intrinsic_tab$is_Mito<-factor(Mito_intrinsic_tab$is_Mito,
levels = c("Mitochondrial genes","Non-mitochondrial genes"),ordered = TRUE)
Mito_intrinsic_tab$f12<-interaction(Mito_intrinsic_tab$is_Mito,Mito_intrinsic_tab$i_or_c)
ggplot(Mito_intrinsic_tab,aes(y=int,x=f12,fill=is_Mito))+
scale_fill_manual(values=c("#CC79A7", "#56B4E9"))+
geom_boxplot(outlier.size=0.1,fatten=0.5)+
xlab(label="")+
ylab(label="Intrinsic noise")+
theme(axis.text.y=element_text(size=12,family="Times New Roman",color="black"))+
theme(axis.title.y=element_text(size=12,family="Times New Roman",color="black"))+
theme_linedraw()+
theme(legend.position = "bottom")+
theme(legend.title=element_blank())+
theme(legend.text=element_text(size=12,family="Times New Roman",color="black"))+
theme(legend.direction = "vertical")+
theme(legend.margin=margin(-0.5))+
removeGridX()+
theme(axis.text.x=element_blank())+
theme(axis.ticks.x=element_blank())+
theme(axis.title.x=element_blank())+
scale_y_continuous(limits=c(-3000,6000),breaks=c(-2000,0,2000,4000))
#Fig.3a
Mito_extrinsic_tab<-data.frame(c(Gene_noise_table$extrinsic_residual,Gene_noise_table$extrinsic_residual_controlIn),
c(Gene_noise_table$Mito,Gene_noise_table$Mito),
c(rep("Dext",length(Gene_noise_table$Genes)),rep("Dext_c",length(Gene_noise_table$Genes))))
names(Mito_extrinsic_tab)<-c("ext","is_Mito","e_or_c")
Mito_extrinsic_tab$is_Mito[Mito_extrinsic_tab$is_Mito==TRUE]<-"Mitochondrial genes"
Mito_extrinsic_tab$is_Mito[Mito_extrinsic_tab$is_Mito==FALSE]<-"Non-mitochondrial genes"
Mito_extrinsic_tab$is_Mito<-factor(Mito_extrinsic_tab$is_Mito,
levels = c("Mitochondrial genes","Non-mitochondrial genes"),ordered = TRUE)
Mito_extrinsic_tab$f12<-interaction(Mito_extrinsic_tab$is_Mito,Mito_extrinsic_tab$e_or_c)
ggplot(Mito_extrinsic_tab,aes(y=ext,x=f12,fill=is_Mito))+
scale_fill_manual(values=c("#CC79A7", "#56B4E9"))+
geom_boxplot(outlier.size=0.1,fatten=0.5)+
xlab(label="")+
ylab(label="Extrinsic noise")+
theme(axis.title.y=element_text(size=12,family="Times New Roman",color="black"))+
theme(axis.text.y=element_text(size=12,family="Times New Roman",color="black"))+
theme_linedraw()+
# theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_blank(),axis.line = element_line(colour = "black"),panel.border=element_blank())+
theme(legend.position = "bottom")+
theme(legend.title=element_blank())+
theme(legend.text=element_text(size=12,family="Times New Roman",color="black"))+
theme(legend.direction = "vertical")+
theme(legend.margin=margin(-0.5))+
removeGridX()+
theme(axis.text.x=element_blank())+
theme(axis.ticks.x=element_blank())+
theme(axis.title.x=element_blank())+
scale_y_continuous(limits=c(-3000,6000),breaks=c(-2000,0,2000,4000))
#Figure 3c~d
#========================================================================================================================
Gene_noise_raw<-read.table(file="Data/cl7_noise_raw",sep="\t",header=TRUE)
Mouse_genes_all<-read.table(file="Data/Mouse_protein_coding.txt",sep="\t",header=TRUE)
Mouse_genes_all<-Mouse_genes_all%>%
filter(Chromosome.scaffold.name!="MT")
unique_genes<-unique(as.character(Mouse_genes_all$Gene.name))
gene_unique_index<-match(unique_genes,Mouse_genes_all$Gene.name)
Mouse_genes_all<-Mouse_genes_all[gene_unique_index,]
Mouse_GO_term<-read.table(file="Data/GO_term_name.txt",sep="\t",header=TRUE,quote="", fill=FALSE)
Mouse_expression_all<-read.table(file="Data/mouse_rpkm.txt",sep="\t",header=TRUE,quote="",fill=FALSE)
Mouse_expression_all$mean_exp<-apply(Mouse_expression_all[,1:39],1,mean)
gene_exp_index<-match(Mouse_genes_all$Gene.stable.ID,rownames(Mouse_expression_all))
Mouse_genes_all$mean_exp<-Mouse_expression_all$mean_exp[gene_exp_index]
Mouse_genes_all<-Mouse_genes_all%>%
filter(!is.na(mean_exp))
#Genomic features
#TATA box
TATA_box<-read.table(file="Data/mouse_TATA_all.bed",sep="\t")
TATA_box$genes = unlist(lapply(TATA_box$V4, function (x) strsplit(as.character(x), "_", fixed=TRUE)[[1]][1]))
TATA_index<-match(Mouse_genes_all$Gene.name,TATA_box$genes)
Mouse_genes_all$TATA<-(!is.na(TATA_index))
#RegNetwork data
TF_target_dat<-read.table(file="Data/Mouse_regulatory_interaction.csv",sep=",",header=TRUE)
miRNA_target_dat<-TF_target_dat[(grepl("miR",as.character(TF_target_dat$regulator_symbol))),]
target_number_dat<-miRNA_target_dat%>%
group_by(target_symbol)%>%
dplyr::summarise(target_number=length(target_symbol))
noise_target_index<-match(Mouse_genes_all$Gene.name,target_number_dat$target_symbol)
Mouse_genes_all$target_number<-target_number_dat$target_number[noise_target_index]
Mouse_genes_all$target_number[is.na(Mouse_genes_all$target_number)]<-0
Mouse_GO_term<-read.table(file="Data/GO_term_name.txt",sep="\t",header=TRUE,quote="", fill=FALSE)
Mouse_Mito<-Mouse_GO_term%>%
filter(GO.term.name=="mitochondrion")
Mito_index<-match(Mouse_genes_all$Gene.name,Mouse_Mito$Gene.name)
Mouse_genes_all$Mito<-(!is.na(Mito_index))
Mito_genes<-Mouse_genes_all%>%
filter(Mito)
Mito_control<-Mouse_genes_all%>%
filter(!Mito)
bins<-quantile(Mito_genes$mean_exp,prob=c(1:51)/51)
Mito_stratified<-split(Mito_control,cut(Mito_control$mean_exp,breaks=bins))
genes_each_bin<-numeric(50)
for(i in 1:50){
genes_each_bin[i]<-length(Mito_stratified[[i]]$Gene.name)
}
sam_per_bin<-min(genes_each_bin)
stratified_Mito_control<-Mito_control[FALSE,]
names(stratified_Mito_control)<-names(Mito_control)
set.seed(8)
for(i in 1:50){
sub_tab_index<-sample(c(1:genes_each_bin[i]),sam_per_bin)
sub_tab<-Mito_stratified[[i]][sub_tab_index,]
stratified_Mito_control<-rbind(stratified_Mito_control,sub_tab)
}
#Figure 3c
sum(stratified_Mito_control$TATA)
344/2850
sum(Mito_genes$TATA)
125/1603
df <- data.frame(genes=c("Mitochondria_genes", "Control"),
ratio=c(125/1603,344/2850))
df$bar_order <- factor(df$genes, as.character(df$genes))
ggplot(data=df, aes(x=bar_order, y=ratio,fill=bar_order)) +
geom_bar(stat="identity",width=0.3)+
scale_fill_manual(values=c("#CC79A7", "#F0E442"))+
xlab(label="")+
ylab(label="Fraction of genes with TATA-box")+
theme(axis.text.x = element_text(size=12,family="Times New Roman",color="black"))+
theme(axis.title.y = element_text(size=12,angle=90,vjust = 0.5,family="Times New Roman",color="black"))+
theme(axis.text.y=element_text(size=12,family="Times New Roman",color="black"))+
theme_linedraw()+
scale_y_continuous(limits=c(0,0.15),expand=c(0,0))+
scale_x_discrete(labels=c("Mitochondrial\n genes","Non-mitochondrial \n genes (stratified)"))+
scale_x_discrete(breaks = NULL)+
theme(legend.position = "none")
#Figure 3d
df <- data.frame(genes=c("Mitochondria_genes", "Control"),
ratio=c(1058/1603,2085/2850))
df$bar_order <- factor(df$genes, as.character(df$genes))
ggplot(data=df, aes(x=bar_order, y=ratio,fill=bar_order)) +
geom_bar(stat="identity",width=0.3)+
scale_fill_manual(values=c("#CC79A7", "#F0E442"))+
xlab(label="")+
ylab(label="Fraction of genes targeted by miRNA")+
theme(axis.text.x = element_text(size=12,family="Times New Roman",color="black"))+
theme(axis.title.y = element_text(size=12,angle=90,vjust = 0.5,family="Times New Roman",color="black"))+
theme(axis.text.y=element_text(size=12,family="Times New Roman",color="black"))+
theme_linedraw()+
# theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_blank(), axis.line = element_line(colour = "black"))+
# theme(axis.ticks=element_line(size=1.5))+
# theme(axis.ticks.length=unit(5,"mm"))+
scale_y_continuous(limits=c(0,1),expand=c(0,0))+
scale_x_discrete(labels=c("Mitochondrial\n genes","Non-mitochondrial \n genes (stratified)"))+
scale_x_discrete(breaks = NULL)+
theme(legend.position = "none")