forked from isVoid/Mask_RCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parallel_model.py
173 lines (143 loc) · 6.7 KB
/
parallel_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""
Mask R-CNN
Multi-GPU Support for Keras.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
Ideas and a small code snippets from these sources:
https://github.com/fchollet/keras/issues/2436
https://medium.com/@kuza55/transparent-multi-gpu-training-on-tensorflow-with-keras-8b0016fd9012
https://github.com/avolkov1/keras_experiments/blob/master/keras_exp/multigpu/
https://github.com/fchollet/keras/blob/master/keras/utils/training_utils.py
"""
import tensorflow as tf
import keras.backend as K
import keras.layers as KL
import keras.models as KM
class ParallelModel(KM.Model):
"""Subclasses the standard Keras Model and adds multi-GPU support.
It works by creating a copy of the model on each GPU. Then it slices
the inputs and sends a slice to each copy of the model, and then
merges the outputs together and applies the loss on the combined
outputs.
"""
def __init__(self, keras_model, gpu_count):
"""Class constructor.
keras_model: The Keras model to parallelize
gpu_count: Number of GPUs. Must be > 1
"""
self.inner_model = keras_model
self.gpu_count = gpu_count
merged_outputs = self.make_parallel()
super(ParallelModel, self).__init__(inputs=self.inner_model.inputs,
outputs=merged_outputs)
def __getattribute__(self, attrname):
"""Redirect loading and saving methods to the inner model. That's where
the weights are stored."""
if 'load' in attrname or 'save' in attrname:
return getattr(self.inner_model, attrname)
return super(ParallelModel, self).__getattribute__(attrname)
def summary(self, *args, **kwargs):
"""Override summary() to display summaries of both, the wrapper
and inner models."""
super(ParallelModel, self).summary(*args, **kwargs)
self.inner_model.summary(*args, **kwargs)
def make_parallel(self):
"""Creates a new wrapper model that consists of multiple replicas of
the original model placed on different GPUs.
"""
# Slice inputs. Slice inputs on the CPU to avoid sending a copy
# of the full inputs to all GPUs. Saves on bandwidth and memory.
input_slices = {name: tf.split(x, self.gpu_count)
for name, x in zip(self.inner_model.input_names,
self.inner_model.inputs)}
output_names = self.inner_model.output_names
outputs_all = []
for i in range(len(self.inner_model.outputs)):
outputs_all.append([])
# Run the model call() on each GPU to place the ops there
for i in range(self.gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i):
# Run a slice of inputs through this replica
zipped_inputs = zip(self.inner_model.input_names,
self.inner_model.inputs)
inputs = [
KL.Lambda(lambda s: input_slices[name][i],
output_shape=lambda s: (None,) + s[1:])(tensor)
for name, tensor in zipped_inputs]
# Create the model replica and get the outputs
outputs = self.inner_model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
# Save the outputs for merging back together later
for l, o in enumerate(outputs):
outputs_all[l].append(o)
# Merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs, name in zip(outputs_all, output_names):
# If outputs are numbers without dimensions, add a batch dim.
def add_dim(tensor):
"""Add a dimension to tensors that don't have any."""
if K.int_shape(tensor) == ():
return KL.Lambda(lambda t: K.reshape(t, [1, 1]))(tensor)
return tensor
outputs = list(map(add_dim, outputs))
# Concatenate
merged.append(KL.Concatenate(axis=0, name=name)(outputs))
return merged
if __name__ == "__main__":
# Testing code below. It creates a simple model to train on MNIST and
# tries to run it on 2 GPUs. It saves the graph so it can be viewed
# in TensorBoard. Run it as:
#
# python3 parallel_model.py
import os
import numpy as np
import keras.optimizers
from keras.datasets import mnist
from keras.preprocessing.image import ImageDataGenerator
GPU_COUNT = 2
# Root directory of the project
ROOT_DIR = os.getcwd()
# Directory to save logs and trained model
MODEL_DIR = os.path.join(ROOT_DIR, "logs/parallel")
def build_model(x_train, num_classes):
# Reset default graph. Keras leaves old ops in the graph,
# which are ignored for execution but clutter graph
# visualization in TensorBoard.
tf.reset_default_graph()
inputs = KL.Input(shape=x_train.shape[1:], name="input_image")
x = KL.Conv2D(32, (3, 3), activation='relu', padding="same",
name="conv1")(inputs)
x = KL.Conv2D(64, (3, 3), activation='relu', padding="same",
name="conv2")(x)
x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x)
x = KL.Flatten(name="flat1")(x)
x = KL.Dense(128, activation='relu', name="dense1")(x)
x = KL.Dense(num_classes, activation='softmax', name="dense2")(x)
return KM.Model(inputs, x, "digit_classifier_model")
# Load MNIST Data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.expand_dims(x_train, -1).astype('float32') / 255
x_test = np.expand_dims(x_test, -1).astype('float32') / 255
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
# Build data generator and model
datagen = ImageDataGenerator()
model = build_model(x_train, 10)
# Add multi-GPU support.
model = ParallelModel(model, GPU_COUNT)
optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, clipnorm=5.0)
model.compile(loss='sparse_categorical_crossentropy',
optimizer=optimizer, metrics=['accuracy'])
model.summary()
# Train
model.fit_generator(
datagen.flow(x_train, y_train, batch_size=64),
steps_per_epoch=50, epochs=10, verbose=1,
validation_data=(x_test, y_test),
callbacks=[keras.callbacks.TensorBoard(log_dir=MODEL_DIR,
write_graph=True)]
)