-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGSEA_bulk.R
114 lines (94 loc) · 3.74 KB
/
GSEA_bulk.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
data <- read.csv('G://allsigDEG.csv')
if (!("clusterProfiler" %in% installed.packages())) {
# Install this package if it isn't installed yet
BiocManager::install("clusterProfiler", update = FALSE)
}
if (!("msigdbr" %in% installed.packages())) {
# Install this package if it isn't installed yet
BiocManager::install("msigdbr", update = FALSE)
}
if (!("org.Mm.eg.db" %in% installed.packages())) {
# Install this package if it isn't installed yet
BiocManager::install("org.Mm.eg.db", update = FALSE)
}
# Attach the library
library(clusterProfiler)
# Package that contains MSigDB gene sets in tidy format
library(msigdbr)
# Human annotation package we'll use for gene identifier conversion
library(org.Mm.eg.db)
# We will need this so we can use the pipe: %>%
library(magrittr)
msigdbr_species()
mm_hallmark_sets <- msigdbr(
species = "Mus musculus", # Replace with species name relevant to your data
category = "H"
)
head(mm_hallmark_sets)
keytypes(org.Mm.eg.db)
# First let's create a mapped data frame we can join to the differential
# expression stats
dge_mapped_df <- data.frame(
gene_symbol = mapIds(
# Replace with annotation package for the organism relevant to your data
org.Mm.eg.db,
keys = data$gene,
# Replace with the type of gene identifiers in your data
keytype = "ENSEMBL",
# Replace with the type of gene identifiers you would like to map to
column = "SYMBOL",
# This will keep only the first mapped value for each Ensembl ID
multiVals = "first"
)
) %>%
# If an Ensembl gene identifier doesn't map to a gene symbol, drop that
# from the data frame
dplyr::filter(!is.na(gene_symbol)) %>%
# Make an `Ensembl` column to store the rownames
tibble::rownames_to_column("Ensembl") %>%
# Now let's join the rest of the expression data
dplyr::inner_join(data, by = c("Ensembl" = "gene"))
head(dge_mapped_df)
any(duplicated(dge_mapped_df$gene_symbol))
# Let's create a named vector ranked based on the log2 fold change values
lfc_vector <- dge_mapped_df$log2FoldChange
names(lfc_vector) <- dge_mapped_df$gene_symbol
# We need to sort the log2 fold change values in descending order here
lfc_vector <- sort(lfc_vector, decreasing = TRUE)
# Look at first entries of the ranked log2 fold change vector
head(lfc_vector)
# Set the seed so our results are reproducible:
set.seed(2023)
gsea_results <- GSEA(
geneList = lfc_vector, # Ordered ranked gene list
minGSSize = 25, # Minimum gene set size
maxGSSize = 500, # Maximum gene set set
pvalueCutoff = 0.05, # p-value cutoff
eps = 0, # Boundary for calculating the p value
seed = TRUE, # Set seed to make results reproducible
pAdjustMethod = "BH", # Benjamini-Hochberg correction
TERM2GENE = dplyr::select(
mm_hallmark_sets,
gs_name,
gene_symbol
)
)
# We can access the results from our `gsea_results` object using `@result`
head(gsea_results@result)
gsea_result_df <- data.frame(gsea_results@result)
gsea_result_df %>%
# This returns the 5 rows with the largest NES values
dplyr::slice_max(NES, n = 5)
gsea_result_df %>%
# Return the 3 rows with the smallest (most negative) NES values
dplyr::slice_min(NES, n = 3)
readr::write_tsv(
gsea_result_df,
file.path('C://Users/Emil/10X/Lydia_GSEA.tsv'
)
)
#to visualize
libraru(ggplot2)
ggplot(lyd, aes(x = reorder(Pathway,Fold.Enrichment), y = Fold.Enrichment, fill = c('red','red','red','red','red','red','red','red','red','red',
'blue','blue','blue','blue','blue','blue','blue','blue','blue','blue'))) + geom_bar(stat = "identity", color="black",) +
geom_hline(yintercept=0, linetype="dashed", color = "black") + theme_bw() + theme(legend.position = 'none') + coord_flip() + ylim(-12,12)