forked from brian-lau/MatlabStan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStanFit.m
389 lines (348 loc) · 13.7 KB
/
StanFit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
% STANFIT - Class defining the fit of a Stan model
%
% obj = StanFit(varargin);
%
% There is no need for users to create instances of StanFit objects.
% StanFit instances are returned when calling the 'stan' function, or
% when invoking the 'sampling' method of a StanModel instance.
%
% All inputs are passed in using name/value pairs. The name is a string
% followed by the value (described below).
% The order of the pairs does not matter, nor does the case.
% TODO:
% x clean up and generalize for both sampling and optim
% o separate out optim from mcmc object?
% o merge()
% o auto merge when handles equal?
% o should be able to construct stanfit object from just csv files
% o some way to periodically read or peek at incoming samples?
classdef StanFit < handle
properties
model % StanModel object
processes % processManager objects
output_file
verbose
exit_value
loaded
end
properties(Dependent = true)
pars
sim
end
properties(SetAccess = private, Hidden = true)
pos_ % cache file positions
sim_
end
events
exit
end
properties(GetAccess = public, SetAccess = protected)
version = '0.8.0';
end
methods
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Constructor
function self = StanFit(varargin)
p = inputParser;
p.KeepUnmatched= true;
p.FunctionName = 'StanFit constructor';
p.addParamValue('model','',@(x) isa(x,'StanModel'));
p.addParamValue('processes','',@(x) isa(x,'processManager'));
p.addParamValue('output_file',{},@(x) iscell(x));
p.addParamValue('verbose',false);
p.parse(varargin{:});
if ~isempty(p.Results.model)
self.model = p.Results.model;
end
% Listen for exit from processManager
if ~isempty(p.Results.processes)
if ~mstan.check_ver(p.Results.processes(1).version,'0.4.0')
error(['You are using an old release of processManager. ' ...
'Upgrade to the latest at: https://github.com/brian-lau/MatlabProcessManager']);
else
for i = 1:numel(p.Results.processes)
addlistener(p.Results.processes(i).state,'exit',...
@(src,evnt)process_exit(self,src,evnt));
end
end
self.processes = p.Results.processes;
end
self.verbose = p.Results.verbose;
if ~isempty(p.Results.output_file)
self.output_file = p.Results.output_file;
self.exit_value = nan(size(self.output_file));
self.loaded = nan(size(self.output_file));
end
self.pos_ = nan(size(self.output_file));
if numel(self.processes) ~= numel(self.output_file)
error('StanFit:constructor:InputFormat',...
'The number of processes should match the number of expected data files.');
end
if isprop(self.model,'seed')
self.sim_ = mcmc(self.model.seed);
else
self.sim_ = mcmc();
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function set.verbose(self,bool)
if isscalar(bool) && islogical(bool)
if ~isempty(self.processes)
[self.processes.printStdout] = deal(bool);
self.verbose = bool;
end
else
error('StanFit:verbose:InputFormat','Boolean scalar expected.');
end
end
function stop(self)
if ~isempty(self.processes)
if any([self.processes.running])
self.processes.stop();
else
fprintf('Stan is already finished.\n');
end
end
end
function check(self)
% Print status to screen for each running chain.
if ~isempty(self.processes)
if any([self.processes.running])
for i = 1:numel(self.processes)
if self.processes(i).running;
fprintf('%s \t %s\n',self.processes(i).id,self.processes(i).stdout{end});
end
end
else
fprintf('All Stan processes finished.\n');
end
else
fprintf('Nothing to check.\n');
end
end
function sim = get.sim(self)
if exit_with_data(self)
sim = self.sim_;
else
sim = [];
end
end
function out = extract(self,varargin)
if ~exit_with_data(self) && all(isnan(self.pos_))
out = [];
return;
end
p = inputParser;
p.FunctionName = 'StanFit extract';
p.addParamValue('pars',{},@(x) iscell(x) || ischar(x));
p.addParamValue('permuted',true,@islogical);
p.addParamValue('inc_warmup',false,@islogical);
p.parse(varargin{:});
out = self.sim_.extract('names',p.Results.pars,...
'permuted',p.Results.permuted,...
'inc_warmup',p.Results.inc_warmup);
end
function process_exit(self,src,~)
if src.exitValue == 0
self.process_exit_success(src);
elseif src.exitValue == 143
% TODO: check that SIGTERM (143) is the same on windows/linux?
self.process_exit_success(src);
else
self.process_exit_failure(src);
end
end
function peek(self)
if exit_with_data(self)
fprintf('Nothing to peek at, Stan is already done.');
return;
end
if strcmp(self.model.method,'optimize')
fprintf('Nothing to peek at, optimizing');
return;
elseif strcmp(self.model.method,'sample')
for ind = 1:numel(self.output_file)
[hdr,flatNames,flatSamples,pos] = mstan.read_stan_csv(...
self.output_file{ind},self.model.inc_warmup);
self.pos_(ind) = pos;
if isempty(flatSamples)
disp('Stan hasn''t saved any samples for this chain yet');
else
[names,dims,samples] = mstan.parse_flat_samples(flatNames,flatSamples);
% Account for thinning
if self.model.inc_warmup
exp_warmup = ceil(self.model.warmup/self.model.thin);
else
exp_warmup = 0;
end
exp_iter = ceil(self.model.iter/self.model.thin);
% FIXME, currently remove existing chain
try
self.sim_.remove(ind);
catch
end
% Append to mcmc object
self.sim_.append(samples,names,exp_warmup,exp_iter,ind);
self.sim_.user_data{ind} = hdr;
end
end
end
end
function process_exit_success(self,src)
% FIXME is there ever a possibility that we get simultaneous notifications
ind = strcmp(self.output_file,fullfile(self.model.working_dir,src.id));
self.exit_value(ind) = src.exitValue;
if self.verbose
fprintf('stan started processing %s\n',src.id);
end
if any(ind)
if strcmp(self.model.method,'optimize')
[hdr,flatNames,flatSamples] = mstan.read_stan_csv(...
self.output_file{ind},true);
elseif strcmp(self.model.method,'sample')
[hdr,flatNames,flatSamples,pos] = mstan.read_stan_csv(...
self.output_file{ind},self.model.inc_warmup);
end
[names,dims,samples] = mstan.parse_flat_samples(flatNames,flatSamples);
if strcmp(self.model.method,'optimize')
exp_warmup = 0;
exp_iter = 1;
else
% Account for thinning
if self.model.inc_warmup
exp_warmup = ceil(self.model.warmup/self.model.thin);
else
exp_warmup = 0;
end
exp_iter = ceil(self.model.iter/self.model.thin);
end
% FIXME, currently remove existing chain
try
self.sim_.remove(ind);
catch
end
% Append to mcmc object
self.sim_.append(samples,names,exp_warmup,exp_iter,ind);
self.sim_.user_data{ind} = hdr;
end
if self.verbose
fprintf('stan finished processing %s\n',src.id);
end
self.loaded(ind) = true;
if nansum(self.loaded) == numel(self.loaded)
%if any(arrayfun(@(x) isempty(x.lp__),self.iter_))
% % FIXME: not a good check, eventually we may not keep lp__
% warning('Failure to load chains correctly');
%end
notify(self,'exit');
end
end
function process_exit_failure(self,src)
% TODO, check against Stan errors, and print to screen
% Stan error codes: https://github.com/stan-dev/stan/blob/develop/src/stan/gm/error_codes.hpp
% OK = 0,
% USAGE = 64,
% DATAERR = 65,
% NOINPUT = 66,
% SOFTWARE = 70,
% CONFIG = 78
warning('Stan seems to have exited badly.');
end
function str = print(self,varargin)
% TODO:
% o this should allow multiple files and regexp.
% x this does not work when method=optim, should shortcut
%
% note that passing regexp through in the command does not work,
% need to implment search in matlab
% TODO: allow print parameters
% FIXME: ugh, if multiple fits were done with same output names
% print will just give the results from the last one. should
% StanModel generate unique names?
if strcmp(self.model.method,'optimize')
fprintf('%s\n',self.processes.stdout{:});
return;
end
p = inputParser;
p.FunctionName = 'StanFit print';
p.addParamValue('file',{},@(x) iscell(x) || ischar(x));
p.addParamValue('sig_figs',2,@isscalar);
p.parse(varargin{:});
if isempty(p.Results.file)
if ~isempty(self.output_file)
file = self.output_file;
end
elseif ischar(p.Results.file)
file = {p.Results.file};
else
file = p.Results.file;
end
if ischar(file)
command = [self.model.stan_home filesep 'bin/print --sig_figs='...
num2str(p.Results.sig_figs) ' ' file];
elseif iscell(file)
command = [self.model.stan_home filesep 'bin/print --sig_figs='...
num2str(p.Results.sig_figs) ' ' sprintf('%s ',file{:})];
end
p = processManager('command',command,...
'workingDir',self.model.working_dir,...
'wrap',100,...
'printStdout',false,...
'printStderr',false,...
'keepStdout',true,...
'keepStderr',true);
p.block(0.05);
if p.exitValue == 0
str = p.stdout;
fprintf('%s\n',str{:});
else
if any(strcmp(p.stdout,'Warning: non-fatal error reading adapation data'))...
|| any(strcmp(p.stdout,'Warning: non-fatal error reading samples'))
fprintf('Looks like print got called before any samples were saved.\n');
fprintf('Wait a bit longer, or attach a listener.\n');
end
str = p.stderr;
end
end
function summary(self)
end
function block(self)
% FIXME: is_running can return false before self.loaded
if ~isempty(self.processes)%is_running(self) % stan called
% FIXME, what if callback fails??
while nansum(self.loaded) ~= numel(self.loaded)
% pause() in some Matlab versions leaks memory
java.lang.Thread.sleep(0.05*1000);
end
end
end
function bool = is_running(self)
bool = false;
if ~isempty(self.processes)
bool = any(isnan(self.exit_value));
end
end
function bool = exit_with_data(self)
bool = false;
if ~isempty(self.processes) % stan called
if is_running(self) && ~all(isnan(self.pos_))
% not finished, but peek has been called for partial samples
elseif is_running(self) && all(isnan(self.pos_)) % not finished
fprintf('Stan is still working. You can either:\n');
fprintf(' 1) Use the peek method to get partial samples\n');
fprintf(' 2) Come back later, or\n');
fprintf(' 3) Attach a listener to the StanFit object.\n');
elseif all((self.exit_value == 0) | (self.exit_value == 143)) % finished cleanly
% TODO: check that SIGTERM (143) is the same on windows/linux?
bool = true;
else % finished badly
fprintf('Stan seems to have encountered a problem.\n');
fprintf('Processes exited with codes: %g.\n',self.exit_value);
end
end
end
function traceplot(self,varargin)
self.sim.traceplot(varargin{:});
end
end
end