-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet.py
executable file
·134 lines (95 loc) · 4.66 KB
/
ResNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.batch_norm1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1)
self.batch_norm2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels*self.expansion, kernel_size=1, stride=1, padding=0)
self.batch_norm3 = nn.BatchNorm2d(out_channels*self.expansion)
self.i_downsample = i_downsample
self.stride = stride
self.relu = nn.ReLU()
def forward(self, x):
identity = x.clone()
x = self.relu(self.batch_norm1(self.conv1(x)))
x = self.relu(self.batch_norm2(self.conv2(x)))
x = self.conv3(x)
x = self.batch_norm3(x)
#downsample if needed
if self.i_downsample is not None:
identity = self.i_downsample(identity)
#add identity
x+=identity
x=self.relu(x)
return x
class Block(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, i_downsample=None, stride=1):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False)
self.batch_norm1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, stride=stride, bias=False)
self.batch_norm2 = nn.BatchNorm2d(out_channels)
self.i_downsample = i_downsample
self.stride = stride
self.relu = nn.ReLU()
def forward(self, x):
identity = x.clone()
x = self.relu(self.batch_norm2(self.conv1(x)))
x = self.batch_norm2(self.conv2(x))
if self.i_downsample is not None:
identity = self.i_downsample(identity)
print(x.shape)
print(identity.shape)
x += identity
x = self.relu(x)
return x
class ResNet(nn.Module):
def __init__(self, ResBlock, layer_list, num_classes, num_channels=3):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(num_channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.batch_norm1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.max_pool = nn.MaxPool2d(kernel_size = 3, stride=2, padding=1)
self.layer1 = self._make_layer(ResBlock, layer_list[0], planes=64)
self.layer2 = self._make_layer(ResBlock, layer_list[1], planes=128, stride=2)
self.layer3 = self._make_layer(ResBlock, layer_list[2], planes=256, stride=2)
self.layer4 = self._make_layer(ResBlock, layer_list[3], planes=512, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512*ResBlock.expansion, num_classes)
def forward(self, x):
x = self.relu(self.batch_norm1(self.conv1(x)))
x = self.max_pool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc(x)
return x
def _make_layer(self, ResBlock, blocks, planes, stride=1):
ii_downsample = None
layers = []
if stride != 1 or self.in_channels != planes*ResBlock.expansion:
ii_downsample = nn.Sequential(
nn.Conv2d(self.in_channels, planes*ResBlock.expansion, kernel_size=1, stride=stride),
nn.BatchNorm2d(planes*ResBlock.expansion)
)
layers.append(ResBlock(self.in_channels, planes, i_downsample=ii_downsample, stride=stride))
self.in_channels = planes*ResBlock.expansion
for i in range(blocks-1):
layers.append(ResBlock(self.in_channels, planes))
return nn.Sequential(*layers)
def ResNet50(num_classes, channels=3):
return ResNet(Bottleneck, [3,4,6,3], num_classes, channels)
def ResNet101(num_classes, channels=3):
return ResNet(Bottleneck, [3,4,23,3], num_classes, channels)
def ResNet152(num_classes, channels=3):
return ResNet(Bottleneck, [3,8,36,3], num_classes, channels)