-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathavailable_tf_hub_models.py
107 lines (81 loc) · 3.23 KB
/
available_tf_hub_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
"""
This module creates a list of named tuples `tf_hub_models` with the
available pretrained model name, url, and the input size it was trained
with.
Note this isn't currently all models (though does contain all
fine-tunable TF2 "imagenet/mobilenet_v2" variants as of Jun 17, 2020).
"""
from collections import namedtuple
# pretrained mobile-net available in many width-multiplier and input size
_mobilnet_models = [
(140, 224),
(130, 224),
(100, 224),
(75, 224),
(50, 224),
(35, 224),
(100, 192),
(75, 192),
(50, 192),
(35, 192),
(100, 160),
(75, 160),
(50, 160),
(35, 160),
(100, 128),
(75, 128),
(50, 128),
(35, 128),
(100, 96),
(75, 96),
(35, 96),
]
TFHubModel = namedtuple('TF_Hub_Model', ['name', 'url', 'input_size'])
def tf_hub_model(name, input_size, url=None):
if url is None:
url = get_hub_url(model_name)
return TFHubModel(name, url, input_size)
def get_hub_url(model_name):
return f"https://tfhub.dev/google/imagenet/{model_name}/feature_vector/5"
# add all mobilenet models to list
tf_hub_models = []
for width_multiplier, input_size in _mobilnet_models:
model_name = "mobilenet_v2_%03d_%d" % (width_multiplier, input_size)
tf_hub_models.append(tf_hub_model(model_name, input_size))
tf_hub_models += [
tf_hub_model("inception_v3", 96), # online claims this is 299
tf_hub_model("resnet_v2_50", 96),
tf_hub_model("resnet_v2_101", 224),
tf_hub_model("resnet_v2_152", 224),
tf_hub_model("pnasnet_large", 331),
tf_hub_model("nasnet_large", 331),
tf_hub_model("resnet_v2_152", 224),
]
# add efficientnet models
# note using 114 instead of 224 to avoid OOM error
def enet_url(i):
return f'https://tfhub.dev/tensorflow/efficientnet/b{i}/feature-vector/1'
enet_sizes = (224, 240, 260, 300, 380, 456, 528, 600)
tf_hub_models += \
[tf_hub_model(f'EfficientNet-B{i}', s, enet_url(i)) for i, s in zip(range(8), enet_sizes)]
# add BiT-S (ImageNet-1k) and BiT-M (ImageNet-21k) models (expected size unkown)
tf_hub_models += [
tf_hub_model('BiT-S-R50x1', 224, 'https://tfhub.dev/google/bit/s-r50x1/1'),
tf_hub_model('BiT-S-R50x3', 224, 'https://tfhub.dev/google/bit/s-r50x3/1'),
tf_hub_model('BiT-S-R101x1', 224, 'https://tfhub.dev/google/bit/s-r101x1/1'),
tf_hub_model('BiT-S-R101x3', 224, 'https://tfhub.dev/google/bit/s-r101x3/1'),
tf_hub_model('BiT-S-R152x4', 224, 'https://tfhub.dev/google/bit/s-r152x4/1'),
tf_hub_model('BiT-M-R50x1', 224, 'https://tfhub.dev/google/bit/m-r50x1/1'),
tf_hub_model('BiT-M-R50x3', 224, 'https://tfhub.dev/google/bit/m-r50x3/1'),
tf_hub_model('BiT-M-R101x1', 224, 'https://tfhub.dev/google/bit/m-r101x1/1'),
tf_hub_model('BiT-M-R101x3', 224, 'https://tfhub.dev/google/bit/m-r101x3/1'),
tf_hub_model('BiT-M-R152x4', 224, 'https://tfhub.dev/google/bit/m-r152x4/1'),
tf_hub_model('BiT-M-R50x1-invertebrate', 224,
'https://tfhub.dev/google/experts/bit/r50x1/in21k/invertebrate/1'),
]
# make some convenient dictionaries
tf_hub_model_urls = dict((name, url) for name, url, _ in tf_hub_models)
tf_hub_model_input_size = dict((name, sz) for name, _, sz in tf_hub_models)
if __name__ == '__main__':
for x in tf_hub_models:
print(x.name)