diff --git a/theories/abel.v b/theories/abel.v index b7525f7..0ea21ed 100644 --- a/theories/abel.v +++ b/theories/abel.v @@ -1,3 +1,4 @@ +From HB Require Import structures. From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field polyrcf. From Abel Require Import various classic_ext map_gal algR. @@ -458,7 +459,7 @@ apply/eqP; rewrite /image_mem (map_comp (fun i => x * w ^+ i)) val_enum_ord. rewrite -[p]prednK//= mulr1 -[p.-1]prednK//= expr1 !adjoin_cons. have -> : <<<>; x * w>>%VS = <<<>; x>>%VS. apply/eqP; rewrite [X in _ == X]adjoinC eqEsubv/= !Fadjoin_sub//. - by rewrite -(@fpredMl _ _ _ _ x)// ?memv_adjoin//= adjoinC memv_adjoin. + by rewrite -(@fpredMl _ _ x)// ?memv_adjoin//= adjoinC memv_adjoin. by rewrite rpredM// ?memv_adjoin//= adjoinC memv_adjoin. rewrite (Fadjoin_seq_idP _)// all_map; apply/allP => i _/=. by rewrite rpredM ?rpredX//= ?memv_adjoin// adjoinC memv_adjoin. @@ -659,7 +660,8 @@ apply: classic_bind (@classic_fieldExtFor _ _ (p : {poly F^o}) p_neq0). exists rs => //; suff <- : limg iota = 1%VS by []. apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => v. by move=> /memv_imgP[u _ ->]; rewrite iotaF/= rpredZ// rpred1. - pose S := SplittingFieldType F L splitL. + pose sM := FieldExt_isSplittingField.Build F L splitL. + pose S : splittingFieldType F := HB.pack L sM. exists S, rs; split => //=; first by rewrite -(eq_map_poly iotaF). by apply: (sol_p S rs); rewrite -(eq_map_poly iotaF). move=> L rs prs; apply: sol_p => -[M [rs' [prs']]]. @@ -684,7 +686,8 @@ have splitK : splittingFieldFor 1 (p ^^ in_alg K) fullv. by rewrite lfunE subvsP. have sfK : SplittingField.axiom K. by exists (p ^^ in_alg K) => //; apply/polyOver1P; exists p. -pose S := SplittingFieldType F K sfK. +pose sM := FieldExt_isSplittingField.Build F K sfK. +pose S : splittingFieldType F := HB.pack K sM. have splitS : splittingFieldFor 1 (p ^^ in_alg S) fullv by []. have splitM : splittingFieldFor 1 (p ^^ in_alg M) <<1 & rs'>> by exists rs'. have splitL : splittingFieldFor 1 (p ^^ in_alg L) <<1 & rs>> by exists rs. @@ -721,7 +724,8 @@ have splitL : SplittingField.axiom L. exists rs => //; suff <- : limg f = 1%VS by []. apply/eqP; rewrite eqEsubv sub1v andbT; apply/subvP => v. by move=> /memv_imgP[u _ ->]; rewrite fF/= rpredZ// rpred1. -pose S := SplittingFieldType F L splitL. +pose sM := FieldExt_isSplittingField.Build F L splitL. +pose S : splittingFieldType F := HB.pack L sM. pose d := \dim <<1 & (rs : seq S)>>. have /classic_cycloSplitting-/(_ S) : d%:R != 0 :> F. by have /charf0P-> := charF0; rewrite -lt0n adim_gt0. @@ -752,7 +756,9 @@ have prs : p ^^ in_alg L %= \prod_(z <- rs) ('X - z%:P). by rewrite (eq_map_poly (fmorph_eq_rat _)). have splitL : SplittingField.axiom L. by exists (p ^^ in_alg L); [by apply/polyOver1P; exists p | exists rs]. -pose S := SplittingFieldType rat L splitL. +pose Frat := [the fieldType of rat : Type]. +pose sM := FieldExt_isSplittingField.Build Frat L splitL. +pose S : splittingFieldType Frat := HB.pack L sM. pose d := \dim <<1 & (rs : seq S)>>. have d_gt0 : (d > 0)%N by rewrite adim_gt0. have [ralg ralg_prim] := C_prim_root_exists d_gt0. @@ -769,7 +775,8 @@ have splitL' : SplittingField.axiom L'. have [us cycloE usw] := splitting_Fadjoin_cyclotomic 1%AS w_prim. exists (us ++ rs'); last by rewrite adjoin_cat usw -adjoin_cons. by rewrite big_cat/= (eqp_trans (eqp_mulr _ cycloE))// eqp_mull//. -pose S' := SplittingFieldType rat L' splitL'. +pose sM' := FieldExt_isSplittingField.Build Frat L' splitL'. +pose S' : splittingFieldType Frat := HB.pack L' sM'. have splitS : splittingFieldFor 1 (p ^^ in_alg S) fullv by exists rs. have splitS' : splittingFieldFor 1 (p ^^ in_alg S') <<1 & rs'>> by exists rs'. have [f /= imgf] := splitting_ahom splitS splitS'. @@ -780,10 +787,10 @@ Qed. Lemma splitting_num_field (p : {poly rat}) : {L : splittingFieldType rat & { LtoC : {rmorphism L -> algC} | (p != 0 -> splittingFieldFor 1 (p ^^ in_alg L) {:L}) - /\ (p = 0 -> L = [splittingFieldType rat of rat^o]) }}. + /\ (p = 0 -> L = [the splittingFieldType rat of rat^o]) }}. Proof. have [->|p_neq0] := eqVneq p 0. - by exists [splittingFieldType rat of rat^o], [rmorphism of ratr]; split. + by exists [the splittingFieldType rat of rat^o], [rmorphism of ratr]; split. have [/= rsalg pE] := closed_field_poly_normal (p ^^ (ratr : _ -> algC)). have {}pE : p ^^ ratr %= \prod_(z <- rsalg) ('X - z%:P). by rewrite pE (eqp_trans (eqp_scale _ _)) ?eqpxx// lead_coef_eq0 map_poly_eq0. @@ -793,7 +800,10 @@ have splitL' : splittingFieldFor 1 (p ^^ in_alg L') {: L'}%AS. by rewrite -map_poly_comp map_prod_XsubC rs'E (eq_map_poly (fmorph_eq_rat _)). have splitaxL' : SplittingField.axiom L'. by exists (p ^^ in_alg L'); first by apply/polyOver1P; exists p. -exists (SplittingFieldType rat L' splitaxL'), L'toC; split => //. +pose Frat := [the fieldType of rat : Type]. +pose sM' := FieldExt_isSplittingField.Build Frat L' splitaxL'. +pose S' : splittingFieldType Frat := HB.pack L' sM'. +exists S', L'toC; split => //. by move=> p_eq0; rewrite p_eq0 eqxx in p_neq0. Qed. @@ -813,7 +823,7 @@ Qed. Definition numfield (p : {poly rat}) : splittingFieldType rat := projT1 (splitting_num_field p). -Lemma numfield0 : numfield 0 = [splittingFieldType rat of rat^o]. +Lemma numfield0 : numfield 0 = [the splittingFieldType rat of rat^o]. Proof. by rewrite /numfield; case: splitting_num_field => //= ? [? [_ ->]]. Qed. Definition numfield_inC (p : {poly rat}) : @@ -903,7 +913,7 @@ Qed. Let rp'_uniq : uniq rp'. Proof. rewrite -separable_prod_XsubC -(eqp_separable ratr_p'). -rewrite -char0_ratrE separable_map. +rewrite -char0_ratrE separable_map separable_poly.unlock. apply/coprimepP => d; have [sp_gt1 eqp] := p_irr => /eqp. rewrite size_poly_eq1; have [//|dN1 /(_ isT)] := boolP (d %= 1). move=> /eqp_dvdl-> /dvdp_leq; rewrite -size_poly_eq0 polyorder.size_deriv. @@ -1075,7 +1085,7 @@ Lemma gal_perm_cycle_order : #[(gal_perm gal_cycle)]%g = d. Proof. by rewrite order_injm ?gal_cycle_order ?injm_gal_perm ?gal1. Qed. Definition conjL : {lrmorphism L -> L} := - projT1 (restrict_aut_to_normal_num_field iota conjC). + projT1 (restrict_aut_to_normal_num_field iota Num.conj_op). Definition iotaJ : {morph iota : x / conjL x >-> x^*} := projT2 (restrict_aut_to_normal_num_field _ _). @@ -1211,6 +1221,7 @@ Qed. Lemma separable_example : separable_poly poly_example. Proof. +rewrite separable_poly.unlock. apply/coprimepP => q /(irredp_XsubCP irreducible_example) [//| eqq]. have size_deriv_example : size poly_example^`() = 5%N. rewrite !derivCE addr0 alg_polyC -scaler_nat addr0. @@ -1271,7 +1282,7 @@ apply: lt_sorted_eq; rewrite ?sorted_roots//. by rewrite /= andbT -subr_gt0 opprK ?addr_gt0 ?alpha_gt0. move=> x; rewrite mem_rootsR ?map_poly_eq0// !inE -topredE/= orbC. rewrite deriv_poly_example /root. -rewrite rmorphB linearZ/= map_polyC/= map_polyXn !pesimp. +rewrite rmorphB /= linearZ map_polyC/= map_polyXn !pesimp. rewrite -[5%:R]sqr_sqrtr ?ler0n// (exprM _ 2 2) -exprMn (natrX _ 2 2) subr_sqr. rewrite mulf_eq0 [_ + 2%:R == 0]gt_eqF ?orbF; last first. by rewrite ltr_spaddr ?ltr0n// mulr_ge0 ?sqrtr_ge0// exprn_even_ge0. @@ -1297,7 +1308,7 @@ rewrite -big_filter (perm_big (map algRval (rootsR pR))); last first. rewrite map_poly_comp/=. apply/andP/mapP => [[xR xroot]|[y + ->]]. exists (in_algR xR); rewrite // mem_rootsR// -topredE/=. - by rewrite -(mapf_root algRval_rmorphism)/=. + by rewrite -(mapf_root [rmorphism of algRval])/=. rewrite mem_rootsR// -[y \in _]topredE/=. by split; [apply/algRvalP|rewrite mapf_root]. apply/eqP; rewrite sum1_size size_map eqn_leq. @@ -1356,12 +1367,7 @@ Definition decode_const (n : nat) : const := match n with 0 => Zero | 1 => One | n.+2 => URoot n end. Lemma code_constK : cancel encode_const decode_const. Proof. by case. Qed. -Definition const_eqMixin := CanEqMixin code_constK. -Canonical const_eqType := EqType const const_eqMixin. -Definition const_choiceMixin := CanChoiceMixin code_constK. -Canonical const_choiceType := ChoiceType const const_choiceMixin. -Definition const_countMixin := CanCountMixin code_constK. -Canonical const_countType := CountType const const_countMixin. +HB.instance Definition _ := Countable.copy const (can_type code_constK). Definition encode_binOp (c : binOp) : bool := match c with Add => false | Mul => true end. @@ -1369,12 +1375,7 @@ Definition decode_binOp (b : bool) : binOp := match b with false => Add | _ => Mul end. Lemma code_binOpK : cancel encode_binOp decode_binOp. Proof. by case. Qed. -Definition binOp_eqMixin := CanEqMixin code_binOpK. -Canonical binOp_eqType := EqType binOp binOp_eqMixin. -Definition binOp_choiceMixin := CanChoiceMixin code_binOpK. -Canonical binOp_choiceType := ChoiceType binOp binOp_choiceMixin. -Definition binOp_countMixin := CanCountMixin code_binOpK. -Canonical binOp_countType := CountType binOp binOp_countMixin. +HB.instance Definition _ := Countable.copy binOp (can_type code_binOpK). Definition encode_unOp (c : unOp) : nat + nat := match c with Opp => inl _ 0%N | Inv => inl _ 1%N @@ -1384,12 +1385,7 @@ Definition decode_unOp (n : nat + nat) : unOp := | inl n.+2 => Exp n | inr n => Root n end. Lemma code_unOpK : cancel encode_unOp decode_unOp. Proof. by case. Qed. -Definition unOp_eqMixin := CanEqMixin code_unOpK. -Canonical unOp_eqType := EqType unOp unOp_eqMixin. -Definition unOp_choiceMixin := CanChoiceMixin code_unOpK. -Canonical unOp_choiceType := ChoiceType unOp unOp_choiceMixin. -Definition unOp_countMixin := CanCountMixin code_unOpK. -Canonical unOp_countType := CountType unOp unOp_countMixin. +HB.instance Definition _ := Countable.copy unOp (can_type code_unOpK). Fixpoint encode_algT F (f : algterm F) : GenTree.tree (F + const) := let T_ isbin := if isbin then binOp else unOp in @@ -1416,14 +1412,12 @@ Lemma code_algTK F : cancel (@encode_algT F) (@decode_algT F). Proof. by elim => // [u f IHf|b f IHf f' IHf']/=; rewrite pickleK -lock ?IHf ?IHf'. Qed. -Definition algT_eqMixin (F : eqType) := CanEqMixin (@code_algTK F). -Canonical algT_eqType (F : eqType) := EqType (algterm F) (@algT_eqMixin F). -Definition algT_choiceMixin (F : choiceType) := CanChoiceMixin (@code_algTK F). -Canonical algT_choiceType (F : choiceType) := - ChoiceType (algterm F) (@algT_choiceMixin F). -Definition algT_countMixin (F : countType) := CanCountMixin (@code_algTK F). -Canonical algT_countType (F : countType) := - CountType (algterm F) (@algT_countMixin F). +HB.instance Definition _ (F : eqType) := Equality.copy (algterm F) + (can_type (@code_algTK F)). +HB.instance Definition _ (F : choiceType) := Choice.copy (algterm F) + (can_type (@code_algTK F)). +HB.instance Definition _ (F : countType) := Countable.copy (algterm F) + (can_type (@code_algTK F)). Declare Scope algT_scope. Delimit Scope algT_scope with algT. @@ -1554,7 +1548,9 @@ have mprs : mp ^^ in_alg L %= \prod_(z <- rsmp) ('X - z%:P). by rewrite -char0_ratrE// (eq_map_poly (fmorph_eq_rat _)) eqpxx. have splitL : SplittingField.axiom L. by exists (mp ^^ in_alg L); [apply/polyOver1P; exists mp | exists rsmp]. -pose S := SplittingFieldType rat L splitL. +pose Frat := [the fieldType of rat : Type]. +pose sM := FieldExt_isSplittingField.Build Frat L splitL. +pose S : splittingFieldType Frat := HB.pack L sM. have algsW: {subset rsalg <= algs}. move=> x; rewrite -fsE => /mapP[{x}f ffs ->]. apply/flattenP; exists (subeval ratr f); rewrite ?map_f//. @@ -1576,7 +1572,7 @@ rewrite {p p_neq0 mkalg pE prs rsmp iota_rs mprs rsf rs rsE mp suff: forall (L : splittingFieldType rat) (iota : {rmorphism L -> algC}) als, map iota als = algs -> radical.-ext 1%VS <<1 & als>>%VS. by move=> /(_ S iota als alsE). -move=> {}L {}iota {splitL S} {}als {}alsE; rewrite {}/algs in alsE. +move=> {sM}L {}iota {splitL S} {}als {}alsE; rewrite {}/algs in alsE. elim: fs => [|f fs IHfs]//= in rsalg fsE als alsE *. case: als => []// in alsE *. by rewrite Fadjoin_nil; apply: rext_refl. diff --git a/theories/xmathcomp/algR.v b/theories/xmathcomp/algR.v index d16fcc2..033a402 100644 --- a/theories/xmathcomp/algR.v +++ b/theories/xmathcomp/algR.v @@ -1,3 +1,4 @@ +From HB Require Import structures. From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field. From Abel Require Import various. @@ -15,37 +16,23 @@ Local Notation "p ^^ f" := (map_poly f p) Record algR := in_algR {algRval : algC; algRvalP : algRval \is Num.real}. -Canonical algR_subType := [subType for algRval]. -Definition algR_eqMixin := [eqMixin of algR by <:]. -Canonical algR_eqType := EqType algR algR_eqMixin. -Definition algR_choiceMixin := [choiceMixin of algR by <:]. -Canonical algR_choiceType := ChoiceType algR algR_choiceMixin. -Definition algR_countMixin := [countMixin of algR by <:]. -Canonical algR_countType := CountType algR algR_countMixin. -Definition algR_zmodMixin := [zmodMixin of algR by <:]. -Canonical algR_zmodType := ZmodType algR algR_zmodMixin. -Definition algR_ringMixin := [ringMixin of algR by <:]. -Canonical algR_ringType := RingType algR algR_ringMixin. -Definition algR_comRingMixin := [comRingMixin of algR by <:]. -Canonical algR_comRingType := ComRingType algR algR_comRingMixin. -Definition algR_unitRingMixin := [unitRingMixin of algR by <:]. -Canonical algR_unitRingType := UnitRingType algR algR_unitRingMixin. -Canonical algR_comUnitRingType := [comUnitRingType of algR]. -Definition algR_idomainMixin := [idomainMixin of algR by <:]. -Canonical algR_idomainType := IdomainType algR algR_idomainMixin. -Definition algR_fieldMixin := [fieldMixin of algR by <:]. -Canonical algR_fieldType := FieldType algR algR_fieldMixin. -Definition algR_porderMixin := [porderMixin of algR by <:]. -Canonical algR_porderType := POrderType ring_display algR algR_porderMixin. -Lemma total_algR : totalPOrderMixin [porderType of algR]. +HB.instance Definition _ := [isSub for algRval]. +HB.instance Definition _ := [Countable of algR by <:]. +HB.instance Definition _ := [SubChoice_isSubIntegralDomain of algR by <:]. +HB.instance Definition _ := [SubIntegralDomain_isSubField of algR by <:]. +HB.instance Definition _ := [POrder of algR by <:]. +Lemma total_algR : total (<=%O : rel [porderType of algR]). Proof. by move=> x y; apply/real_leVge/valP/valP. Qed. -Canonical algR_latticeType := LatticeType algR total_algR. -Canonical algR_distrLatticeType := DistrLatticeType algR total_algR. -Canonical algR_orderType := OrderType algR total_algR. +HB.instance Definition _ := Order.POrder_isTotal.Build _ algR total_algR. -Lemma algRval_is_rmorphism : rmorphism algRval. Proof. by []. Qed. -Canonical algRval_additive := Additive algRval_is_rmorphism. -Canonical algRval_rmorphism := RMorphism algRval_is_rmorphism. +Lemma algRval_is_additive : additive algRval. Proof. by []. Qed. +Lemma algRval_is_multiplicative : multiplicative algRval. Proof. by []. Qed. +HB.instance Definition _ := + GRing.isAdditive.Build [zmodType of algR] [zmodType of algC] algRval + algRval_is_additive. +HB.instance Definition _ := + GRing.isMultiplicative.Build [ringType of algR] [ringType of algC] algRval + algRval_is_multiplicative. Definition algR_norm (x : algR) : algR := in_algR (normr_real (val x)). Lemma algR_ler_norm_add x y : algR_norm (x + y) <= (algR_norm x + algR_norm y). @@ -58,8 +45,6 @@ Lemma algR_normrN x : algR_norm (- x) = algR_norm x. Proof. by apply/val_inj; apply: normrN. Qed. Section Num. -Definition algR_normedMixin := - Num.NormedMixin algR_ler_norm_add algR_normr0_eq0 algR_normrMn algR_normrN. Section withz. Let z : algR := 0. @@ -73,18 +58,10 @@ Lemma algR_ler_def (x y : algR) : (x <= y) = (algR_norm (y - x) == y - x). Proof. by apply: ler_def. Qed. End withz. -Let algR_ring := (GRing.Ring.Pack (GRing.ComRing.base - (GRing.ComUnitRing.base (GRing.IntegralDomain.base - (GRing.IntegralDomain.class [idomainType of algR]))))). -Definition algR_numMixin : @Num.mixin_of algR_ring _ _ := - @Num.Mixin _ _ algR_normedMixin - algR_addr_gt0 algR_ger_leVge algR_normrM algR_ler_def. - -Canonical algR_numDomainType := NumDomainType algR algR_numMixin. -Canonical algR_normedZmodType := NormedZmodType algR algR algR_normedMixin. -Canonical algR_numFieldType := [numFieldType of algR]. -Canonical algR_realDomainType := [realDomainType of algR]. -Canonical algR_realFieldType := [realFieldType of algR]. +HB.instance Definition _ := Num.Zmodule_isNormed.Build _ algR + algR_ler_norm_add algR_normr0_eq0 algR_normrMn algR_normrN. +HB.instance Definition _ := Num.isNumRing.Build algR + algR_addr_gt0 algR_ger_leVge algR_normrM algR_ler_def. End Num. Definition algR_archiFieldMixin : Num.archimedean_axiom [numDomainType of algR]. @@ -96,7 +73,8 @@ set n := floorC _; have [n_lt0|n_ge0] := ltP n 0. move=> x_lt; exists (`|(n + 1)%R|%N); apply: lt_le_trans x_lt _. by rewrite /= rmorphMn/= pmulrn gez0_abs// addr_ge0. Qed. -Canonical algR_archiFieldType := ArchiFieldType algR algR_archiFieldMixin. +HB.instance Definition _ := Num.RealField_isArchimedean.Build algR + algR_archiFieldMixin. Definition algRpfactor (x : algC) : {poly algR} := if x \is Num.real =P true is ReflectT xR then 'X - (in_algR xR)%:P else @@ -205,7 +183,7 @@ elim: n r => // n IHn [|x r]/= in p pr *. rewrite ltnS => r_lt. have xJxr : x^* \in x :: r. rewrite -root_prod_XsubC -pr. - have /eq_map_poly-> : algRval =1 conjC \o algRval. + have /eq_map_poly-> : algRval =1 Num.conj_op \o algRval. by move=> a /=; rewrite (CrealP (algRvalP _)). by rewrite map_poly_comp mapf_root pr root_prod_XsubC mem_head. have xJr : (x \isn't Num.real) ==> (x^* \in r) by rewrite implyNb CrealE. @@ -270,4 +248,4 @@ move=> /andP[xR rsabR] /andP[axb arsb] prsab. exists (in_algR xR) => //=. by rewrite -(mapf_root [rmorphism of algRval])//= prsab rootM root_XsubC eqxx. Qed. -Canonical algR_rcfType := RcfType algR algR_rcfMixin. +HB.instance Definition _ := Num.RealField_isClosed.Build algR algR_rcfMixin. diff --git a/theories/xmathcomp/char0.v b/theories/xmathcomp/char0.v index 49ea16d..e81562a 100644 --- a/theories/xmathcomp/char0.v +++ b/theories/xmathcomp/char0.v @@ -1,3 +1,4 @@ +From HB Require Import structures. From mathcomp Require Import all_ssreflect all_algebra all_field. Set Implicit Arguments. @@ -45,16 +46,12 @@ Hypothesis charF0 : has_char0 F. Local Notation ratrF := (char0_ratr charF0). -Fact char0_ratr_is_rmorphism : rmorphism ratrF. +Fact char0_ratr_is_additive : additive ratrF. Proof. rewrite /char0_ratr. have injZtoQ: @injective rat int intr by apply: intr_inj. have nz_den x: (denq x)%:~R != 0 :> F by rewrite char0_intr_eq0 // denq_eq0. -do 2?split; rewrite /ratr ?divr1 // => x y; last first. - rewrite mulrC mulrAC; apply: canLR (mulKf (nz_den _)) _; rewrite !mulrA. - do 2!apply: canRL (mulfK (nz_den _)) _; rewrite -!rmorphM; congr _%:~R. - apply: injZtoQ; rewrite !rmorphM [x * y]lock /= !numqE -lock. - by rewrite -!mulrA mulrA mulrCA -!mulrA (mulrCA y). +rewrite /ratr ?divr1 // => x y. apply: (canLR (mulfK (nz_den _))); apply: (mulIf (nz_den x)). rewrite mulrAC mulrBl divfK ?nz_den // mulrAC -!rmorphM. apply: (mulIf (nz_den y)); rewrite mulrAC mulrBl divfK ?nz_den //. @@ -63,8 +60,23 @@ rewrite !(rmorphM, rmorphB) [_ - _]lock /= -lock !numqE. by rewrite (mulrAC y) -!mulrBl -mulrA mulrAC !mulrA. Qed. -Canonical char0_ratr_additive := Additive char0_ratr_is_rmorphism. -Canonical char0_ratr_rmorphism := RMorphism char0_ratr_is_rmorphism. +Fact char0_ratr_is_multiplicative : multiplicative ratrF. +Proof. +rewrite /char0_ratr. +have injZtoQ: @injective rat int intr by apply: intr_inj. +have nz_den x: (denq x)%:~R != 0 :> F by rewrite char0_intr_eq0 // denq_eq0. +split; rewrite /ratr ?divr1 // => x y. +rewrite mulrC mulrAC; apply: canLR (mulKf (nz_den _)) _; rewrite !mulrA. +do 2!apply: canRL (mulfK (nz_den _)) _; rewrite -!rmorphM; congr _%:~R. +apply: injZtoQ; rewrite !rmorphM [x * y]lock /= !numqE -lock. +by rewrite -!mulrA mulrA mulrCA -!mulrA (mulrCA y). +Qed. + +HB.instance Definition _ := GRing.isAdditive.Build [zmodType of rat] F ratrF + char0_ratr_is_additive. +HB.instance Definition _ := + GRing.isMultiplicative.Build [ringType of rat] F ratrF + char0_ratr_is_multiplicative. End Char0MorphismsField. diff --git a/theories/xmathcomp/classic_ext.v b/theories/xmathcomp/classic_ext.v index 21eb643..bdac9db 100644 --- a/theories/xmathcomp/classic_ext.v +++ b/theories/xmathcomp/classic_ext.v @@ -1,3 +1,4 @@ +From HB Require Import structures. From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field. From Abel Require Import various cyclotomic_ext. @@ -62,11 +63,15 @@ move=> /irredp_FAdjoin[L1 df [r1 r1_root r1_full]]. pose L01 := [fieldExtType F0 of baseFieldType L1]. pose r01 : L01 := r1. pose inL01 : L -> L01 := in_alg L1. -have iota_morph : lrmorphism inL01. -split; [split; [exact: rmorphB|split; [exact: rmorphM|]]|]. - by rewrite /inL01 rmorph1. +have iotam : multiplicative inL01. + by split; [exact: rmorphM|rewrite /inL01 rmorph1]. +have iotal : scalable inL01. by move=> k a; rewrite /inL01 -mulr_algl rmorphM/= mulr_algl. -pose iota1 : 'AHom(L, L01) := AHom (linfun_is_ahom (LRMorphism iota_morph)). +pose iotaaM := GRing.isAdditive.Build _ _ inL01 (rmorphB _). +pose iotamM := GRing.isMultiplicative.Build _ _ inL01 iotam. +pose iotalM := GRing.isLinear.Build _ _ _ _ inL01 iotal. +pose iotaLRM : GRing.LRMorphism.type _ _ := HB.pack inL01 iotaaM iotamM iotalM. +pose iota1 : 'AHom(L, L01) := AHom (linfun_is_ahom iotaLRM). have inL01E : inL01 =1 iota1 by move=> x; rewrite lfunE. have r01_root : root (p ^^ iota1) r01 by rewrite -(eq_map_poly inL01E). have r01_full : <>%VS = fullv. @@ -164,7 +169,9 @@ Proof. move=> /(@classic_cycloExt _ L). apply/classic_bind => -[M [w [iota wfull wprim]]]; apply/classicW. suff splitM : SplittingField.axiom M. - by exists (SplittingFieldType F0 M splitM), w, iota. + pose mM := FieldExt_isSplittingField.Build F0 M splitM. + pose mT : splittingFieldType F0 := HB.pack M mM. + by exists mT, w, iota. apply: (@SplittingFieldExt _ L ('Phi_n ^^ intr) _ iota). rewrite -map_poly_comp (eq_map_poly (rmorph_int _)) -wfull. by rewrite (Phi_cyclotomic wprim); apply: splitting_Fadjoin_cyclotomic. @@ -181,7 +188,9 @@ move=> nN0; suff: classically { L' : fieldExtType F & { w : L' & have splitL : SplittingField.axiom L. exists (cyclotomic w n); rewrite ?cyclotomic_over// -wfull. exact: splitting_Fadjoin_cyclotomic. - by exists (SplittingFieldType F L splitL), w. + pose lM := FieldExt_isSplittingField.Build F L splitL. + pose lT : splittingFieldType F := HB.pack L lM. + by exists lT, w. pose Fo := [splittingFieldType F of F^o]. apply: classic_bind (@classic_cycloExt _ Fo n nN0). case=> [L [w [iota wfull wprim]]]; apply/classicW. diff --git a/theories/xmathcomp/cyclotomic_ext.v b/theories/xmathcomp/cyclotomic_ext.v index ca46d08..7433e30 100644 --- a/theories/xmathcomp/cyclotomic_ext.v +++ b/theories/xmathcomp/cyclotomic_ext.v @@ -134,7 +134,7 @@ Lemma galois_Fadjoin_cyclotomic : galois E <>. Proof. apply/splitting_galoisField; exists (cyclotomic w n). split; rewrite ?cyclotomic_over//; last exact: splitting_Fadjoin_cyclotomic. -rewrite /cyclotomic -(big_image _ _ _ (fun x => 'X - x%:P))/=. +rewrite /cyclotomic -(big_image _ _ _ _ (fun x => 'X - x%:P))/=. rewrite separable_prod_XsubC map_inj_uniq ?enum_uniq// => i j /eqP. by rewrite (eq_prim_root_expr w_is_nth_root) !modn_small// => /eqP/val_inj. Qed. diff --git a/theories/xmathcomp/map_gal.v b/theories/xmathcomp/map_gal.v index 10f8600..9d110b1 100644 --- a/theories/xmathcomp/map_gal.v +++ b/theories/xmathcomp/map_gal.v @@ -1,3 +1,4 @@ +From HB Require Import structures. From mathcomp Require Import all_ssreflect all_fingroup all_algebra. From mathcomp Require Import all_solvable all_field. From Abel Require Import various char0. @@ -49,15 +50,13 @@ apply/trivgP/subsetP=> u uG; rewrite inE. by apply/gal_eqP => x xE; rewrite gal_id (fixed_gal _ uG). Qed. -Program Canonical prodv_aspace_law := - @Monoid.Law {subfield L} 1%AS (@prodv_aspace _ _) _ _ _. +Program Definition prodv_aspace_law_mixin := + Monoid.isComLaw.Build {subfield L} 1%AS (@prodv_aspace _ _) _ _ _. Next Obligation. by move=> *; apply/val_inj/prodvA. Qed. +Next Obligation. by move=> *; apply/val_inj/prodvC. Qed. Next Obligation. by move=> *; apply/val_inj/prod1v. Qed. -Next Obligation. by move=> *; apply/val_inj/prodv1. Qed. -Program Canonical prodv_aspace_com_law := - @Monoid.ComLaw {subfield L} 1%AS prodv_aspace_law _. -Next Obligation. by move=> *; apply/val_inj/prodvC. Qed. +HB.instance Definition _ := prodv_aspace_law_mixin. Lemma big_prodv_eq_aspace I (r : seq I) (P : {pred I}) (F : I -> {aspace L}) : (\big[@prodv _ _/1%VS]_(i <- r | P i) F i) = @@ -372,14 +371,20 @@ Proof. move=> /= k a b; apply/lfunP => x; rewrite /map_hom. by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP. Qed. -Canonical map_hom_linear := Linear map_hom_is_linear. +HB.instance Definition _ := + GRing.linear_isLinear.Build F0 + [the lmodType F0 of 'End(L)] [zmodType of 'End(L')] _ map_hom + map_hom_is_linear. Lemma inv_map_hom_is_linear : linear inv_map_hom. Proof. move=> /= k a b; apply/lfunP => x; rewrite /map_hom. by rewrite !(comp_lfunE, add_lfunE, scale_lfunE) linearP. Qed. -Canonical inv_map_hom_linear := Linear inv_map_hom_is_linear. +HB.instance Definition _ := + GRing.linear_isLinear.Build F0 + [the lmodType F0 of 'End(L')] [zmodType of 'End(L)] _ inv_map_hom + inv_map_hom_is_linear. Lemma lker0_map_homC (f : 'End(L)) : lker iota == 0%VS -> (map_hom f \o iota = iota \o f)%VF. @@ -523,7 +528,7 @@ Proof. by rewrite !inE map_ahom_kAut. Qed. Lemma map_ahom_kEnd_img s : map_ahom s \in kAEnd 1 (iota @: {: L})%AS. Proof. rewrite inE -(aimg1 iota) map_ahom_kAut// kAutfE. -exact/kHom_lrmorphism/ahom_is_lrmorphism. +exact/kHom_lrmorphism/ahom_is_multiplicative. Qed. End map_ahom. @@ -672,7 +677,7 @@ Implicit Types (K E F : {subfield L}). Lemma separable_aimgr E F s : s \in kAEndf E -> separable E (s @: F) = separable E F. Proof. -rewrite inE => /kHom_kAut_sub/kAHomP s_id; rewrite -(separable_aimg _ _ s). +rewrite inE => /kHom_kAut_sub/kAHomP s_id; rewrite -[RHS](separable_aimg _ _ s). suff /eq_in_limg->: {in E, s =1 \1%VF} by rewrite lim1g. by move=> x xE; rewrite lfunE/= s_id. Qed. @@ -773,7 +778,8 @@ Lemma solvable_ext_refl E : solvable_ext E E. Proof. by apply/solvable_extP; exists E; rewrite subvv galois_refl/= galvv solvable1. Qed. -#[local] Hint Resolve solvable_ext_refl : core. +#[local] Hint Extern 0 (is_true (solvable_ext (asval _) (asval _))) => + (apply: solvable_ext_refl) : core. Lemma sub_solvable_ext F K E : (E <= F)%VS -> solvable_ext K F -> solvable_ext K E. @@ -837,10 +843,13 @@ Qed. End normalClosure. -#[global] Hint Resolve normalClosureSl : core. -#[global] Hint Resolve normalClosureSr : core. +#[global] Hint Extern 0 (is_true (subsetv (asval _) (normalClosure _ _))) => + (apply: normalClosureSl) : core. +#[global] Hint Extern 0 (is_true (subsetv (asval _) (normalClosure _ _))) => + (apply: normalClosureSr) : core. #[global] Hint Resolve normalClosure_normal : core. -#[global] Hint Resolve solvable_ext_refl : core. +#[global] Hint Extern 0 (is_true (solvable_ext (asval _) (asval _))) => + (apply: solvable_ext_refl) : core. Lemma aimg_normalClosure (F0 : fieldType) (L L' : splittingFieldType F0) (iota : 'AHom(L, L')) (K E : {subfield L}) : diff --git a/theories/xmathcomp/various.v b/theories/xmathcomp/various.v index 1702e11..50f5ce3 100644 --- a/theories/xmathcomp/various.v +++ b/theories/xmathcomp/various.v @@ -1,3 +1,4 @@ +From HB Require Import structures. From mathcomp Require Import all_ssreflect all_fingroup all_algebra all_solvable. From mathcomp Require Import all_field. @@ -160,11 +161,8 @@ Proof. by move=> x; apply/ffunP => i; rewrite !ffunE mulVg. Qed. Lemma extnprod_mulgA : associative extnprod_mulg. Proof. by move=> x y z; apply/ffunP => i; rewrite !ffunE mulgA. Qed. -Definition extnprod_groupMixin := - Eval hnf in FinGroup.Mixin extnprod_mulgA extnprod_mul1g extnprod_mulVg. -Canonical extnprod_baseFinGroupType := - Eval hnf in BaseFinGroupType gTn extnprod_groupMixin. -Canonical prod_group := FinGroupType extnprod_mulVg. +HB.instance Definition _ := isMulGroup.Build gTn + extnprod_mulgA extnprod_mul1g extnprod_mulVg. End ExternalNDirProd. @@ -288,9 +286,9 @@ Section ssrnum. Import Num.Theory. Lemma CrealJ (C : numClosedFieldType) : - {mono (@conjC C) : x / x \is Num.real}. + {mono (@Num.conj_op C) : x / x \is Num.real}. Proof. -suff realK : {homo (@conjC C) : x / x \is Num.real}. +suff realK : {homo (@Num.conj_op C) : x / x \is Num.real}. by move=> x; apply/idP/idP => /realK//; rewrite conjCK. by move=> x xreal; rewrite conj_Creal. Qed. @@ -344,12 +342,12 @@ Lemma map_polyXsubC (aR rR : ringType) (f : {rmorphism aR -> rR}) x : map_poly f ('X - x%:P) = 'X - (f x)%:P. Proof. by rewrite rmorphB/= map_polyX map_polyC. Qed. -Lemma poly_XsubC_over {R : ringType} c (S : {pred R}) (addS : subringPred S) - (kS : keyed_pred addS): c \in kS -> 'X - c%:P \is a polyOver kS. +Lemma poly_XsubC_over {R : ringType} c (S : subringClosed R) : + c \in S -> 'X - c%:P \is a polyOver S. Proof. by move=> cS; rewrite rpredB ?polyOverC ?polyOverX. Qed. -Lemma poly_XnsubC_over {R : ringType} n c (S : {pred R}) (addS : subringPred S) - (kS : keyed_pred addS): c \in kS -> 'X^n - c%:P \is a polyOver kS. +Lemma poly_XnsubC_over {R : ringType} n c (S : subringClosed R) : + c \in S -> 'X^n - c%:P \is a polyOver S. Proof. by move=> cS; rewrite rpredB ?rpredX ?polyOverX ?polyOverC. Qed. Lemma lead_coef_prod {R : idomainType} (ps : seq {poly R}) : @@ -382,17 +380,17 @@ by rewrite rmorph_prod big_map; apply/eq_bigr => x /=; rewrite map_polyXsubC. Qed. Lemma eq_in_map_poly_id0 (aR rR : ringType) (f g : aR -> rR) - (S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) : + (S : addrClosed aR) : f 0 = 0 -> g 0 = 0 -> - {in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}. + {in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}. Proof. move=> f0 g0 eq_fg p pP; apply/polyP => i. by rewrite !coef_map_id0// eq_fg// (polyOverP _). Qed. Lemma eq_in_map_poly (aR rR : ringType) (f g : {additive aR -> rR}) - (S0 : {pred aR}) (addS : addrPred S0) (kS : keyed_pred addS) : - {in kS, f =1 g} -> {in polyOver kS, map_poly f =1 map_poly g}. + (S : addrClosed aR) : + {in S, f =1 g} -> {in polyOver S, map_poly f =1 map_poly g}. Proof. by move=> /eq_in_map_poly_id0; apply; rewrite //?raddf0. Qed. Lemma mapf_root (F : fieldType) (R : ringType) (f : {rmorphism F -> R}) @@ -728,31 +726,28 @@ Arguments prodv_idPr {F0 L K F}. Section canonicals. Variables (F0 : fieldType) (L : fieldExtType F0). -Lemma vsproj_is_lrmorphism : lrmorphism (vsproj {:L}). -Proof. -split; last exact/linearZZ. -split; first exact/raddfB. +Lemma vsproj_is_multiplicative : multiplicative (vsproj {:L}). by split => [v w|]; apply/val_inj; rewrite /= !vsprojK ?memvf ?algid1. Qed. -Canonical vsproj_lrmorphism := LRMorphism vsproj_is_lrmorphism. -Canonical vsproj_rmorphism := RMorphism vsproj_is_lrmorphism. +HB.instance Definition _ := + GRing.isMultiplicative.Build L [ringType of subvs_of {:L}] (vsproj {:L}) + vsproj_is_multiplicative. Definition vssub (k K : {vspace L}) of (k <= K)%VS : subvs_of k -> subvs_of K := vsproj _ \o vsval. Variables (k K : {subfield L}) (kK : (k <= K)%VS). -Lemma vssub_is_lrmorphism : lrmorphism (vssub kK). -split; last exact/linearZZ. -split; first exact/raddfB. +Lemma vssub_is_multiplicative : multiplicative (vssub kK). split => [v w|]; apply/val_inj => /=; last first. by rewrite vsprojK ?algid1 ?rmorph1 ?rpred1//. by rewrite /= !vsprojK/= ?rpredM//= (subvP kK _ (subvsP _)) . Qed. -Canonical vssub_additive := Additive vssub_is_lrmorphism. -Canonical vssub_linear := Linear vssub_is_lrmorphism. -Canonical vssub_rmorphism := RMorphism vssub_is_lrmorphism. -Canonical vssub_lrmorphism := LRMorphism vssub_is_lrmorphism. +HB.instance Definition _ := GRing.Linear.on (vssub kK). +HB.instance Definition _ := + GRing.isMultiplicative.Build + [ringType of subvs_of k] [ringType of subvs_of K] (vssub kK) + vssub_is_multiplicative. Lemma vsval_sub (v : subvs_of k) : vsval (vssub kK v) = vsval v. Proof. by rewrite vsprojK// (subvP kK)// subvsP. Qed. @@ -772,20 +767,29 @@ do [suff init (p : {poly L}) (k : {subfield L}) {g : 'AHom(L, L') | limg g = E'}] in p *. move=> pf pE'; pose K := [FalgType F0 of subvs_of (1%VS : {vspace L})]. have [idF0 idF0E] : {f : 'AHom(K, L') | forall x : F0, f x%:A = x%:A}. - have flr : lrmorphism - (fun v : K => in_alg L' (projT1 (sig_eqW (vlineP _ _ (valP v))))). - do ![split] => [? ?|? ?||a ?]/=. - - case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->. - by rewrite -!in_algE -raddfB => /fmorph_inj<-//; rewrite raddfB. + pose f (v : K) := in_alg L' (projT1 (sig_eqW (vlineP _ _ (valP v)))). + have fa : additive f. + move=> ? ?; rewrite /f. + case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->. + by rewrite -!in_algE -raddfB => /fmorph_inj<-//; rewrite raddfB. + have fm : multiplicative f. + split=> [? ?|]; rewrite /f. - case: sig_eqW => x; case: sig_eqW => /= v->; case: sig_eqW => /= w->. by rewrite -!in_algE -rmorphM => /fmorph_inj<-//; rewrite rmorphM. - case: sig_eqW => /= one /esym/eqP; rewrite algid1. - by rewrite -in_algE fmorph_eq1 => /eqP->; rewrite scale1r. - - case: sig_eqW => x; case: sig_eqW => /= v->. - rewrite -mulr_algl -in_algE -rmorphM => /fmorph_inj<-. - by rewrite -in_algE rmorphM mulr_algl. - exists (linfun_ahom (LRMorphism flr)) => v; rewrite lfunE/=. - by case: sig_eqW => /= x; rewrite algid1 -in_algE => /fmorph_inj->. + by rewrite -[X in X == _]in_algE fmorph_eq1 => /eqP->; rewrite scale1r. + have fl : scalable f. + move=> a ? /=; rewrite /f. + case: sig_eqW => x; case: sig_eqW => /= v->. + rewrite -[_ *: _]mulr_algl -in_algE -rmorphM => /fmorph_inj<-. + by rewrite -in_algE rmorphM mulr_algl. + pose faM := GRing.isAdditive.Build _ _ _ fa. + pose fmM := GRing.isMultiplicative.Build _ _ _ fm. + pose flM := GRing.isLinear.Build _ _ _ _ _ fl. + pose fLRM : GRing.LRMorphism.type _ _ := HB.pack f faM fmM flM. + exists (linfun_ahom fLRM) => v; rewrite lfunE/= /f. + case: sig_eqW => /= x. + by rewrite algid1 -[in X in X -> _]in_algE => /fmorph_inj->. apply: (init (p ^^ in_alg L) 1%AS idF0) => //. by apply/polyOver1P; exists p. suff -> : limg idF0 = 1%VS. @@ -888,15 +892,21 @@ have polM (v w : Kx) : pol (val v * val w) = pol (val v) * pol (val w) %% q. - by rewrite -ltnS -size_minPoly ltn_modp ?monic_neq0 ?monic_minPoly//. rewrite -Fadjoin_poly_mod ?rpredM ?Fadjoin_polyOver//. by rewrite hornerM !Fadjoin_poly_eq//= ?rpredM ?subvsP. -have hlr : lrmorphism (fun v : Kx => (pol (val v) ^^ f).[x']). - do ![split] => [v w|v w||w v]/=. - - by rewrite -raddfB/= polB raddfB !hornerE. - - by rewrite -rmorphM/= polM map_modp/= horner_mod// rmorphM hornerE. - - by rewrite algid1 pol1 rmorph1 hornerE. - - by rewrite polZ linearZ/= rmorph_alg hornerE mulr_algl. -pose h := linfun_ahom (LRMorphism hlr). -exists h; first by rewrite lfunE/= polX map_polyX hornerX. -by move=> v; rewrite /comp lfunE/= vsval_sub/= polC map_polyC hornerC. +pose h (v : Kx) := (pol (val v) ^^ f).[x']. +have ha : additive h. + by move=> v w; rewrite /h/= -raddfB/= polB raddfB !hornerE. +have hm : multiplicative h. + split=> [v w|]. + - by rewrite /h /= -rmorphM/= polM map_modp/= horner_mod// rmorphM hornerE. + - by rewrite /h /= algid1 pol1 rmorph1 hornerE. +have hl : scalable h. + by move=> ? ?; rewrite /h /= polZ linearZ/= rmorph_alg hornerE mulr_algl. +pose haM := GRing.isAdditive.Build _ _ _ ha. +pose hmM := GRing.isMultiplicative.Build _ _ _ hm. +pose hlM := GRing.isLinear.Build _ _ _ _ _ hl. +pose hLRM : GRing.LRMorphism.type _ _ := HB.pack h haM hmM hlM. +exists (linfun_ahom hLRM); first by rewrite lfunE/= /h polX map_polyX hornerX. +by move=> v; rewrite /comp lfunE/= /h/= vsval_sub/= polC map_polyC hornerC. Qed. Lemma lker0_img_cap (K : fieldType) (aT rT : vectType K) (f : 'Hom(aT, rT)) @@ -1108,7 +1118,9 @@ Lemma sol_setXn n (gT : 'I_n -> finGroupType) (G : forall i, {group gT i}) : Proof. elim: n => [|n IHn] in gT G * => solG; first by rewrite setX0 solvable1. pose gT' (i : 'I_n) := gT (lift ord0 i). -pose f (x : prod_group gT) : prod_group gT' := [ffun i => x (lift ord0 i)]. +pose prod_group_gT := [the finGroupType of {dffun forall i, gT i}]. +pose prod_group_gT' := [the finGroupType of {dffun forall i, gT' i}]. +pose f (x : prod_group_gT) : prod_group_gT' := [ffun i => x (lift ord0 i)]. have fm : morphic (setXn G) f. apply/'forall_implyP => -[a b]; rewrite !inE/=. by move=> /andP[/forallP aG /forallP bG]; apply/eqP/ffunP => i; rewrite !ffunE. @@ -1119,8 +1131,8 @@ have -> : (morphm fm @* setXn G)%g = setXn (fun i => G (lift ord0 i)). move=> /imsetP[/=x]; rewrite inE => /forallP/= xG ->. by move=> i; rewrite morphmE ffunE xG. move=> vG; apply/imsetP. - pose w : prod_group gT := [ffun i : 'I_n.+1 => - match unliftP ord0 i with + pose w := [ffun i : 'I_n.+1 => + match unliftP ord0 i return (gT i) : Type with | UnliftSome j i_eq => ecast i (gT i) (esym i_eq) (v j) | UnliftNone i0 => 1%g end]. @@ -1133,8 +1145,12 @@ have -> : (morphm fm @* setXn G)%g = setXn (fun i => G (lift ord0 i)). rewrite inE; apply/forallP => i. by case: (unliftP ord0 i) => [j|]->; rewrite ?wl ?w0 ?vG. rewrite IHn ?andbT//; last by move=> i; apply: solG. -pose k (x : gT ord0) : prod_group gT := - [ffun i : 'I_n.+1 => if (ord0 =P i) is ReflectT P then ecast i (gT i) P x else 1%g]. +pose k (x : gT ord0) : prod_group_gT := + [ffun i : 'I_n.+1 => + match (ord0 =P i) return (gT i) : Type with + | ReflectT P => ecast i (gT i) P x + | _ => 1%g + end]. have km : morphic (G ord0) k. apply/'forall_implyP => -[a b]; rewrite !inE/= => /andP[aG bG]. apply/eqP/ffunP => i; rewrite !ffunE; case: eqP => //; rewrite ?mulg1//.