-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
542 lines (483 loc) · 25.6 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import argparse
from glob import glob
from xml.etree.ElementTree import TreeBuilder
import globals
import os
# limit the number of cpus used by high performance libraries
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import csv
import time
import threading
from multiprocessing import Process
import sys
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import pptracking_util as p_util
from flow_direction import FlowDirection
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import logging
from yolov5.models.experimental import attempt_load
from yolov5.utils.downloads import attempt_download
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.dataloaders import VID_FORMATS, LoadImages, LoadStreams
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords, check_requirements, cv2,
check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr, print_args)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors, save_one_box
from strong_sort.utils.parser import get_config
from strong_sort.strong_sort import StrongSORT
from heatmap import heatmap
from pptrack_handler import PPTrackHandler
from pptracking_util import COLOR_CLOSE, COLOR_LONG, COLOR_MIDDLE, show, BackgroundManager
from optflow import Optflow
#from curve import draw_trace
import copy
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
def video_command():
parser.add_argument('--yolo-weights', nargs='+', type=str, default=WEIGHTS / 'crowdhuman_yolov5m.pt', help='model.pt path(s)')
parser.add_argument('--strong-sort-weights', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
parser.add_argument('--config-strongsort', type=str, default='strong_sort/configs/strong_sort.yaml')
parser.add_argument('--source', type=str, default='test_data/testing/0.mp4', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-box', action='store_true', default = True, help='display tracking video results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
parser.add_argument('--classes', nargs='+', type=int, default=0,help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--name', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--show-heatmap', action='store_true', default=True,help='show heatmap')
parser.add_argument('--show-arrow', action='store_true', default=True,help='show arrow')
parser.add_argument('--show-trace', action='store_true', default=True ,help='show trace')
parser.add_argument('--show-original', action='store_true',help='show original')
parser.add_argument('--show-optflow', action='store_false', default = True, help='show optflow')
parser.add_argument('--wait', action='store_true', help='when showing img, waiting for user command to continue')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
return opt
opt = video_command()
total_heatmap_time = 0
total_trace_time = 0
total_arrow_time = 0
total_optflow_time = 0
n_of_people = 0
people_nums_array = []
heatmap_array = []
trace_array = []
arrow_array = []
yolo_array = []
optflow_array = []
optflow_ppcount = []
strongsort_array = []
# remove duplicated stream handler to avoid duplicated logging
logging.getLogger().removeHandler(logging.getLogger().handlers[0])
@torch.no_grad()
def run(
source='0',
yolo_weights=WEIGHTS / 'yolov5m.pt', # model.pt path(s),
strong_sort_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt', # model.pt path,
config_strongsort=ROOT / 'strong_sort/configs/strong_sort.yaml',
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
show_box=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
save_vid=False, # save confidences in --save-txt labels
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/track', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
show_heatmap = False,
show_arrow = False,
show_trace = False,
show_original = False,
show_optflow = False,
wait = False
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
if not isinstance(yolo_weights, list): # single yolo model
exp_name = str(yolo_weights).rsplit('/', 1)[-1].split('.')[0]
elif type(yolo_weights) is list and len(yolo_weights) == 1: # single models after --yolo_weights
exp_name = yolo_weights[0].split(".")[0]
else: # multiple models after --yolo_weights
exp_name = 'ensemble'
exp_name = name if name is not None else exp_name + "_" + str(strong_sort_weights).split('/')[-1].split('.')[0]
save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run
(save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
device = select_device(device)
model = DetectMultiBackend(yolo_weights, device=device, dnn=dnn, data=None, fp16=half)
names = model.module.names if hasattr(model, 'module') else model.names
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
if webcam:
show_box = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = len(dataset)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = 1
vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources
# initialize StrongSORT
cfg = get_config()
cfg.merge_from_file(opt.config_strongsort)
# Create as many strong sort instances as there are video sources
strongsort_list = []
for i in range(nr_sources):
strongsort_list.append(
StrongSORT(
strong_sort_weights,
device,
max_dist=cfg.STRONGSORT.MAX_DIST,
max_iou_distance=cfg.STRONGSORT.MAX_IOU_DISTANCE,
max_age=cfg.STRONGSORT.MAX_AGE,
n_init=cfg.STRONGSORT.N_INIT,
nn_budget=cfg.STRONGSORT.NN_BUDGET,
mc_lambda=cfg.STRONGSORT.MC_LAMBDA,
ema_alpha=cfg.STRONGSORT.EMA_ALPHA,
)
)
outputs = [None] * nr_sources
# ---------------------------------------------------------------------------------
prev_img = None
prev_features = None
ppbox_mask = None
n_frame = 3 # 決定一次要分析幾個frame , n_frame must>= 2
optflow_result = dict()
pptrack_handler = PPTrackHandler(n_frame)
b_manager = BackgroundManager()
optflow = Optflow()
first_img = []
cnt = 0
min_size = []
ff=0
Flow_thread = None
# ---------------------------------------------------------------------------------
# Run tracking
model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
curr_frames, prev_frames = [None] * nr_sources, [None] * nr_sources
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
if globals.kill_t == True:
print("STOP ANALYZING!!")
break
globals.frame_count_cc += 1
if globals.frame_count_cc >= 100:
break
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False
pred = model(im, augment=opt.augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det)
dt[2] += time_sync() - t3
# Process detections
for i, det in enumerate(pred): # detections per image
seen += 1
if webcam: # nr_sources >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
p = Path(p) # to Path
s += f'{i}: '
txt_file_name = p.name
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# video file
if source.endswith(VID_FORMATS):
txt_file_name = p.stem
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
# folder with imgs
else:
txt_file_name = p.parent.name # get folder name containing current img
save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ...
curr_frames[i] = im0
tmp_img = copy.deepcopy(im0)
if im0.shape[0] >1000 or im0.shape[1]>1000:
tmp_img = cv2.resize(im0,(920,540), interpolation=cv2.INTER_AREA)
cv2.imwrite("output.jpg", tmp_img)
##############################test stream#######################################
#cv2.imshow(str(p),im0)
#break
################################################################################
txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt
s += '%gx%g ' % im.shape[2:] # print string
imc = im0.copy() if save_crop else im0 # for save_crop
background = copy.deepcopy(im0)
b_manager.refresh(background)
annotator = Annotator(im0, line_width=2, pil=not ascii)
if cfg.STRONGSORT.ECC: # camera motion
strongsort_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])
ppl_res = {} # ppl_res : all ppl's sites, key: id, val: (x,y)
box_list = {} # box_list : all ppl's box, key: id, val: [start_x, start_y, end_x, end_y]
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywhs = xyxy2xywh(det[:, 0:4])
# ppl_res = xywhs.cpu().numpy()[:, 0:2] # site [the number of people in frame][x center, y center, w, h]
confs = det[:, 4]
clss = det[:, 5]
# pass detections to strongsort
t4 = time_sync()
outputs[i] = strongsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
t5 = time_sync()
dt[3] += t5 - t4
# draw boxes for visualization
if len(outputs[i]) > 0:
for j, (output, conf) in enumerate(zip(outputs[i], confs)):
bboxes = output[0:4]
id = int(output[4])
cls = output[5]
bbox_c = np.array([(output[2] + output[0]) // 2, (output[3] + output[1]) // 2]) # center site (x,y)
ppl_res[id] = bbox_c
box_list[id] = bboxes
#############################################find min bbox_size###########
w = abs(output[2] - output[0])
h = abs(output[3] - output[1])
if ff == 0 :
min_size = [w, h]
ff=1
else :
if w == 0 or h == 0 :
break
temp_size = [w, h]
if min_size[0]*min_size[1] > temp_size[0]*temp_size[1] :
min_size = temp_size
#######################################################################
# Write MOT compliant results to file
if save_txt:
# to MOT format
bbox_left = output[0]
bbox_top = output[1]
bbox_w = output[2] - output[0]
bbox_h = output[3] - output[1]
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format
bbox_top, bbox_w, bbox_h, -1, -1, -1, i))
if save_vid or save_crop or show_box: # Add bbox to image
c = int(cls) # integer class
id = int(id) # integer id
# print("id: ", id,"\n")
label = f'{id} {names[c]} {conf:.2f}'
annotator.box_label(bboxes, label, color=colors(c, True))
if save_crop:
txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
print("min :",min_size,"\nid :",id)
yolo_array.append(t3-t2)
strongsort_array.append(t5-t4)
LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), StrongSORT:({t5 - t4:.3f}s)')
else:
strongsort_list[i].increment_ages()
LOGGER.info('No detections')
global total_heatmap_time
global total_arrow_time
global total_trace_time
global total_optflow_time
globals.n_of_people = len(ppl_res)
print("People count: ", len(ppl_res))
people_nums_array.append(len(ppl_res))
pptrack_handler.add_record(ppl_res)
if ppl_res:
if show_heatmap:
h, w = im0.shape[0:2]
heatmap_prev_time = time.time()
heatmap(frame_idx, ppl_res, w, h)
heatmap_now_time = time.time()
temp = heatmap_now_time-heatmap_prev_time
total_heatmap_time += temp
heatmap_array.append(temp)
print("Heatmap_SINGLE_TIME:", temp)
# show arrow diagram(opencv)
if show_arrow or show_trace:
if show_arrow:
if show_optflow:
if globals.frame_count_cc%pptrack_handler.frame_max == 0:
# if len(pptrack_handler.records) >= pptrack_handler.frame_max:
optflow_prev_time = time.time()
pdata = pptrack_handler.trans_data2ppdata()
optflow.exec_optical_flow(
im0 = im0,
ppbox_list = box_list,
pdata = pdata,
draw = False
)
optflow_now_time = time.time()
temp = optflow_now_time - optflow_prev_time
optflow_array.append(temp)
optflow_ppcount.append(len(ppl_res))
total_optflow_time += temp
print("Optflow_SINGLE_TIME: ", temp)
Flow = FlowDirection()
if globals.frame_count_cc% pptrack_handler.frame_max == 0:
arrow_prev_time = time.time()
# # 利用optflow結果影響person_data的vector
pdata = pptrack_handler.trans_data2ppdata()
Flow_thread = Process(
target= Flow.exec_flow_direction,
args = (pdata[0], background, optflow.optflow_result)
)
Flow_thread.start()
# Flow.exec_flow_direction(pdata[0], background, optflow.optflow_result)
arrow_now_time = time.time()
temp = arrow_now_time-arrow_prev_time
total_arrow_time += temp
arrow_array.append(temp)
print("Arrow_SINGLE_TIME:",temp)
if show_trace:
if cnt == 0:
tmp_h, tmp_w = im0.shape[:2]
transparent = np.zeros((tmp_h, tmp_w, 4), dtype = np.uint8)
first_img = transparent
cnt = 1
if len(pptrack_handler.records) >= pptrack_handler.frame_max:
pdata = pptrack_handler.trans_data2ppdata()
trace_prev_time = time.time()
curve_img = pptrack_handler.draw_trace(pdata, first_img)
background = cv2.cvtColor(background, cv2.COLOR_BGR2BGRA)
#print(curve_img.shape, background.shape)
curve_img = cv2.addWeighted(curve_img, 1, background, 1, 0)
trace_now_time = time.time()
temp = trace_now_time-trace_prev_time
total_trace_time += temp
trace_array.append(temp)
print("Trace_SINGLE_TIME:", temp)
show("Trace", curve_img)
if Flow_thread is not None:
Flow_thread.join()
print("TOTAL HEATMAP TIME:", total_heatmap_time)
print("TOTAL ARROW TIME:", total_arrow_time)
print("TOTAL TRACE TIME", total_trace_time)
print("TOTAL OPTFLOW TIME", total_optflow_time)
# Stream results
im0 = annotator.result()
if show_box:
box_im = copy.deepcopy(im0)
box_im = cv2.resize(box_im, (1000,700), interpolation=cv2.INTER_AREA)
box_im= cv2.putText(box_im, "number of people:"+str(len(ppl_res)), (10, 100), cv2.FONT_HERSHEY_DUPLEX,1, (255, 0, 0), 2, cv2.LINE_AA)
show("Box", box_im)
# Save results (image with detections)
if save_vid:
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
prev_frames[i] = curr_frames[i]
if wait:
print('press "ENTER" to continue')
input()
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms strong sort update per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_vid:
s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(yolo_weights) # update model (to fix SourceChangeWarning)
def main(opt):
global total_heatmap_time
global total_arrow_time
global total_trace_time
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
time_start = time.time()
run(**vars(opt))
time_end = time.time()
print("TOTAL OPTICAL FLOW TIME:", total_optflow_time)
print("TOTAL HEATMAP TIME:", total_heatmap_time)
print("TOTAL ARROW TIME:", total_arrow_time)
print("TOTAL TRACE TIME", total_trace_time)
print("TOTAL TIME:" + format(time_end-time_start))
# p_util.write_result(
# path = 'optflow_result.csv',
# data_header = 'optflow_result',
# data = optflow_array,
# people_nums_array = optflow_ppcount,
# write_header=True
# )
def start_stream(source):
print("After pass: ", source)
parser.set_defaults(source = source)
opt = parser.parse_args()
main(opt)
if __name__ == "__main__":
# opt = video_command()
main(opt)
#video_command()