forked from dev-Roshan-lab/symptom-predictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
139 lines (111 loc) · 6.83 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from sklearn import svm
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from flask import Flask
import numpy as np
import pandas as pd
import os
app = Flask(__name__)
@app.route('/hello')
def home():
return 'hello'
@app.route('/rf/<sym1>/<sym2>/<sym3>/<sym4>/<sym5>')
def predict(sym1, sym2, sym3, sym4, sym5):
# from gui_stuff import *
l1=['back pain','constipation','abdominal pain','diarrhoea','mild fever','yellow urine',
'yellowing of eyes','acute liver failure','fluid overload','swelling of stomach',
'swelled lymph nodes','malaise','blurred and distorted vision','phlegm','throat irritation',
'redness of eyes','sinus pressure','runny nose','congestion','chest pain','weakness in limbs',
'fast heart rate','pain during bowel movements','pain in anal region','bloody stool',
'irritation in anus','neck pain','dizziness','cramps','bruising','obesity','swollen legs',
'swollen blood vessels','puffy face and eyes','enlarged thyroid','brittle nails',
'swollen extremeties','excessive hunger','extra marital contacts','drying and tingling lips',
'slurred speech','knee pain','hip joint pain','muscle weakness','stiff neck','swelling joints',
'movement stiffness','spinning movements','loss of balance','unsteadiness',
'weakness of one body side','loss of smell','bladder discomfort','foul smell of urine',
'continuous feel of urine','passage of gases','internal itching','toxic look (typhos)',
'depression','irritability','muscle pain','altered sensorium','red spots over body','belly pain',
'abnormal menstruation','dischromic patches','watering from eyes','increased appetite','polyuria','family history','mucoid sputum',
'rusty sputum','lack of concentration','visual disturbances','receiving blood transfusion',
'receiving unsterile injections','coma','stomach bleeding','distention of abdomen',
'history of alcohol consumption','fluid overload','blood in sputum','prominent veins on calf',
'palpitations','painful walking','pus filled pimples','blackheads','scurring','skin peeling',
'silver like dusting','small dents in nails','inflammatory nails','blister','red sore around nose',
'yellow crust ooze']
disease=['Fungal infection','Allergy','GERD','Chronic cholestasis','Drug Reaction',
'Peptic ulcer diseae','AIDS','Diabetes','Gastroenteritis','Bronchial Asthma','Hypertension',
' Migraine','Cervical spondylosis',
'Paralysis (brain hemorrhage)','Jaundice','Malaria','Chicken pox','Dengue','Typhoid','hepatitis A',
'Hepatitis B','Hepatitis C','Hepatitis D','Hepatitis E','Alcoholic hepatitis','Tuberculosis',
'Common Cold','Pneumonia','Dimorphic hemmorhoids(piles)',
'Heartattack','Varicoseveins','Hypothyroidism','Hyperthyroidism','Hypoglycemia','Osteoarthristis',
'Arthritis','(vertigo) Paroymsal Positional Vertigo','Acne','Urinary tract infection','Psoriasis',
'Impetigo']
l2=[]
for x in range(0,len(l1)):
l2.append(0)
# TESTING DATA df -------------------------------------------------------------------------------------
df=pd.read_csv(os.path.abspath(os.path.dirname(__file__).replace("",""))+"/asset/Training.csv")
df.replace({'prognosis':{'Fungal infection':0,'Allergy':1,'GERD':2,'Chronic cholestasis':3,'Drug Reaction':4,
'Peptic ulcer diseae':5,'AIDS':6,'Diabetes ':7,'Gastroenteritis':8,'Bronchial Asthma':9,'Hypertension ':10,
'Migraine':11,'Cervical spondylosis':12,
'Paralysis (brain hemorrhage)':13,'Jaundice':14,'Malaria':15,'Chicken pox':16,'Dengue':17,'Typhoid':18,'hepatitis A':19,
'Hepatitis B':20,'Hepatitis C':21,'Hepatitis D':22,'Hepatitis E':23,'Alcoholic hepatitis':24,'Tuberculosis':25,
'Common Cold':26,'Pneumonia':27,'Dimorphic hemmorhoids(piles)':28,'Heart attack':29,'Varicose veins':30,'Hypothyroidism':31,
'Hyperthyroidism':32,'Hypoglycemia':33,'Osteoarthristis':34,'Arthritis':35,
'(vertigo) Paroymsal Positional Vertigo':36,'Acne':37,'Urinary tract infection':38,'Psoriasis':39,
'Impetigo':40}},inplace=True)
# print(df.head())
X= df[l1]
y = df[["prognosis"]]
np.ravel(y)
# print(y)
# TRAINING DATA tr --------------------------------------------------------------------------------
tr=pd.read_csv(os.path.abspath(os.path.dirname(__file__).replace("",""))+"/asset/Testing.csv")
tr.replace({'prognosis':{'Fungal infection':0,'Allergy':1,'GERD':2,'Chronic cholestasis':3,'Drug Reaction':4,
'Peptic ulcer diseae':5,'AIDS':6,'Diabetes ':7,'Gastroenteritis':8,'Bronchial Asthma':9,'Hypertension ':10,
'Migraine':11,'Cervical spondylosis':12,
'Paralysis (brain hemorrhage)':13,'Jaundice':14,'Malaria':15,'Chicken pox':16,'Dengue':17,'Typhoid':18,'hepatitis A':19,
'Hepatitis B':20,'Hepatitis C':21,'Hepatitis D':22,'Hepatitis E':23,'Alcoholic hepatitis':24,'Tuberculosis':25,
'Common Cold':26,'Pneumonia':27,'Dimorphic hemmorhoids(piles)':28,'Heart attack':29,'Varicose veins':30,'Hypothyroidism':31,
'Hyperthyroidism':32,'Hypoglycemia':33,'Osteoarthristis':34,'Arthritis':35,
'(vertigo) Paroymsal Positional Vertigo':36,'Acne':37,'Urinary tract infection':38,'Psoriasis':39,
'Impetigo':40}},inplace=True)
X_test= tr[l1]
y_test = tr[["prognosis"]]
np.ravel(y_test)
# ------------------------------------------------------------------------------------------------------
#def DecisionTree():
from sklearn.ensemble import RandomForestClassifier
clf3 = RandomForestClassifier()
clf3 = clf3.fit(X,np.ravel(y))
# calculating accuracy-------------------------------------------------------------------
#from sklearn.metrics import accuracy_score
#y_pred=clf3.predict(X_test)
#print(accuracy_score(y_test, y_pred))
#print(accuracy_score(y_test, y_pred,normalize=False))
# -----------------------------------------------------
Symptom1 = '%s' % sym1
Symptom2 = '%s' % sym2
Symptom3 = '%s' % sym3
Symptom4 = '%s' % sym4
Symptom5 = '%s' % sym5
psymptoms = [Symptom1,Symptom2,Symptom3,Symptom4,Symptom5]
for k in range(0,len(l1)):
# print (k,)
for z in psymptoms:
if(z==l1[k]):
l2[k]=1
inputtest = [l2]
predict = clf3.predict(inputtest)
predicted=predict[0]
#print(predicted)
#assigning a string value to "a"
for a in range(0,len(disease)):
if(predicted == a):
break
#Then comparing it to the disease list to get at the position of "a"
#from the disease list
return disease[a]#returning the disease
if __name__ == '__main__':
app.run(debug=True)