forked from dmitropolsky/assemblies
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.py
95 lines (79 loc) · 2.5 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import brain
import brain_util as bu
import numpy as np
import random
import copy
import pickle
import matplotlib.pyplot as plt
from collections import OrderedDict
def fixed_assembly_test(n=100000,k=317,p=0.01,beta=0.01):
b = brain.Brain(p)
b.add_stimulus("stim",k)
b.add_area("A",n,k,beta)
b.project({"stim":["A"]},{})
for i in xrange(3):
b.project({"stim":["A"]},{"A":["A"]})
print(b.areas["A"].w)
b.areas["A"].fix_assembly()
for i in xrange(5):
b.project({"stim":["A"]},{"A":["A"]})
print(b.areas["A"].w)
b.areas["A"].unfix_assembly()
for i in xrange(5):
b.project({"stim":["A"]},{"A":["A"]})
print(b.areas["A"].w)
def explicit_assembly_test():
b = brain.Brain(0.5)
b.add_stimulus("stim",3)
b.add_explicit_area("A",10,3,beta=0.5)
b.add_area("B",10,3,beta=0.5)
print(b.stimuli_connectomes["stim"]["A"])
print(b.connectomes["A"]["A"])
print(b.connectomes["A"]["B"].shape)
print(b.connectomes["B"]["A"].shape)
# Now test projection stimulus -> explicit area
print("Project stim->A")
b.project({"stim":["A"]},{})
print(b.areas["A"].winners)
print(b.stimuli_connectomes["stim"]["A"])
# Now test projection stimulus, area -> area
b.project({"stim":["A"]},{"A":["A"]})
print(b.areas["A"].winners)
print(b.stimuli_connectomes["stim"]["A"])
print(b.connectomes["A"]["A"])
# project explicit A -> B
print("Project explicit A -> normal B")
b.project({},{"A":["B"]})
print(b.areas["B"].winners)
print(b.connectomes["A"]["B"])
print(b.connectomes["B"]["A"])
print(b.stimuli_connectomes["stim"]["B"])
def explicit_assembly_test2(rounds=20):
b = brain.Brain(0.1)
b.add_explicit_area("A",100,10,beta=0.5)
b.add_area("B",10000,100,beta=0.5)
b.areas["A"].winners = list(range(10,20))
b.areas["A"].fix_assembly()
b.project({}, {"A": ["B"]})
# Test that if we fire back from B->A now, we don't recover the fixed assembly
b.areas["A"].unfix_assembly()
b.project({}, {"B": ["A"]})
print(b.areas["A"].winners)
b.areas["A"].winners = list(range(10,20))
b.areas["A"].fix_assembly()
b.project({}, {"A": ["B"]})
for _ in range(rounds):
b.project({}, {"A": ["B"], "B": ["A", "B"]})
print(b.areas["B"].w)
b.areas["A"].unfix_assembly()
b.project({}, {"B": ["A"]})
print("After 1 B->A, got A winners:")
print(b.areas["A"].winners)
for _ in range(4):
b.project({}, {"B": ["A"], "A": ["A"]})
print("After 5 B->A, got A winners:")
print(b.areas["A"].winners)
def explicit_assembly_recurrent():
b = brain.Brain(0.1)
b.add_explicit_area("A",100,10,beta=0.5)
b.areas["A"].winners = list(range(60,70))