-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdata_helpers.py
executable file
·73 lines (65 loc) · 2.88 KB
/
data_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import re
import itertools
from collections import Counter
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_data_and_labels(fashion_data_file, finance_data_file, law_data_file, lifestyle_data_file):
"""
Loads guardian data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
# Load data from files
fashion_examples = list(open(fashion_data_file, "r").readlines())
fashion_examples = [s.strip() for s in fashion_examples]
finance_examples = list(open(finance_data_file, "r").readlines())
finance_examples = [s.strip() for s in finance_examples]
law_examples = list(open(law_data_file, "r").readlines())
lifestyle_examples = list(open(lifestyle_data_file, "r").readlines())
law_examples = [s.strip() for s in law_examples]
lifestyle_examples = [s.strip() for s in lifestyle_examples]
# Split by words
x_text = fashion_examples + finance_examples + law_examples + lifestyle_examples
x_text = [clean_str(sent) for sent in x_text]
# Generate labels
fashion_labels = [[1, 0, 0, 0] for _ in fashion_examples]
finance_labels = [[0, 1, 0, 0] for _ in finance_examples]
law_labels = [[0, 0, 1, 0] for _ in law_examples]
lifestyle_labels = [[0, 0, 0, 1] for _ in lifestyle_examples]
y = np.concatenate([fashion_labels, finance_labels, law_labels, lifestyle_labels], 0)
return [x_text, y]
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int(len(data)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]