-
Notifications
You must be signed in to change notification settings - Fork 6
/
eval_ssd.py
244 lines (213 loc) · 11.7 KB
/
eval_ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import torch
from vision.ssd.vgg_ssd import create_vgg_ssd, create_vgg_ssd_predictor
from vision.ssd.mobilenetv1_ssd import create_mobilenetv1_ssd, create_mobilenetv1_ssd_predictor
from vision.ssd.mobilenetv1_ssd_lite import create_mobilenetv1_ssd_lite, create_mobilenetv1_ssd_lite_predictor
from vision.ssd.squeezenet_ssd_lite import create_squeezenet_ssd_lite, create_squeezenet_ssd_lite_predictor
from vision.datasets.voc_dataset import VOCDataset
from vision.datasets.open_images import OpenImagesDataset
from vision.utils import box_utils, measurements
from vision.utils.misc import str2bool, Timer
import argparse
import pathlib
import numpy as np
import logging
import sys
from vision.ssd.mobilenet_v2_ssd_lite import create_mobilenetv2_ssd_lite, create_mobilenetv2_ssd_lite_predictor
class MeanAPEvaluator:
"""
Mean Average Precision (mAP) evaluator
"""
def __init__(self, dataset, net, arch='mb1-ssd', eval_dir='models/eval_results',
nms_method='hard', iou_threshold=0.5, use_2007_metric=True, device='cuda:0'):
self.dataset = dataset
self.net = net
self.iou_threshold = iou_threshold
self.use_2007_metric = use_2007_metric
self.eval_path = pathlib.Path(eval_dir)
self.eval_path.mkdir(exist_ok=True)
self.true_case_stat, self.all_gb_boxes, self.all_difficult_cases = self.group_annotation_by_class(self.dataset)
if arch == 'vgg16-ssd':
self.predictor = create_vgg_ssd_predictor(net, nms_method=nms_method, device=device)
elif arch == 'mb1-ssd':
self.predictor = create_mobilenetv1_ssd_predictor(net, nms_method=nms_method, device=device)
elif arch == 'mb1-ssd-lite':
self.predictor = create_mobilenetv1_ssd_lite_predictor(net, nms_method=nms_method, device=device)
elif arch == 'sq-ssd-lite':
self.predictor = create_squeezenet_ssd_lite_predictor(net,nms_method=nms_method, device=device)
elif arch == 'mb2-ssd-lite':
self.predictor = create_mobilenetv2_ssd_lite_predictor(net, nms_method=nms_method, device=device)
else:
raise ValueError(f"Invalid network architecture type '{arch}' - it should be one of: vgg16-ssd, mb1-ssd, mb1-ssd-lite, mb2-ssd-lite, sq-ssd-lite")
def compute(self):
is_test = self.net.is_test
self.net.is_test = True
results = []
for i in range(len(self.dataset)):
logging.debug(f"evaluating average precision image {i} / {len(self.dataset)}")
image = self.dataset.get_image(i)
boxes, labels, probs = self.predictor.predict(image)
indexes = torch.ones(labels.size(0), 1, dtype=torch.float32) * i
results.append(torch.cat([
indexes.reshape(-1, 1),
labels.reshape(-1, 1).float(),
probs.reshape(-1, 1),
boxes + 1.0 # matlab's indexes start from 1
], dim=1))
results = torch.cat(results)
self.net.is_test = is_test
for class_index, class_name in enumerate(self.dataset.class_names):
if class_index == 0: continue # ignore background
prediction_path = self.eval_path / f"det_test_{class_name}.txt"
with open(prediction_path, "w") as f:
sub = results[results[:, 1] == class_index, :]
for i in range(sub.size(0)):
prob_box = sub[i, 2:].numpy()
image_id = self.dataset.ids[int(sub[i, 0])]
print(
image_id + "\t" + " ".join([str(v) for v in prob_box]).replace(" ", "\t"),
file=f
)
aps = []
for class_index, class_name in enumerate(self.dataset.class_names):
if class_index == 0:
continue
prediction_path = self.eval_path / f"det_test_{class_name}.txt"
ap = self.compute_average_precision_per_class(
self.true_case_stat[class_index],
self.all_gb_boxes[class_index],
self.all_difficult_cases[class_index],
prediction_path,
self.iou_threshold,
self.use_2007_metric
)
aps.append(ap)
return sum(aps)/len(aps), aps
def log_results(self, mean_ap, class_ap, prefix=''):
logging.info(f"{prefix}Average Precision Per-class:")
for i in range(len(class_ap)):
logging.info(f" {self.dataset.class_names[i+1]}: {class_ap[i]}")
logging.info(f"{prefix}Mean Average Precision (mAP): {mean_ap}")
def group_annotation_by_class(self, dataset):
true_case_stat = {}
all_gt_boxes = {}
all_difficult_cases = {}
for i in range(len(dataset)):
image_id, annotation = dataset.get_annotation(i)
gt_boxes, classes, is_difficult = annotation
gt_boxes = torch.from_numpy(gt_boxes)
for i, difficult in enumerate(is_difficult):
class_index = int(classes[i])
gt_box = gt_boxes[i]
if not difficult:
true_case_stat[class_index] = true_case_stat.get(class_index, 0) + 1
if class_index not in all_gt_boxes:
all_gt_boxes[class_index] = {}
if image_id not in all_gt_boxes[class_index]:
all_gt_boxes[class_index][image_id] = []
all_gt_boxes[class_index][image_id].append(gt_box)
if class_index not in all_difficult_cases:
all_difficult_cases[class_index]={}
if image_id not in all_difficult_cases[class_index]:
all_difficult_cases[class_index][image_id] = []
all_difficult_cases[class_index][image_id].append(difficult)
for class_index in all_gt_boxes:
for image_id in all_gt_boxes[class_index]:
all_gt_boxes[class_index][image_id] = torch.stack(all_gt_boxes[class_index][image_id])
for class_index in all_difficult_cases:
for image_id in all_difficult_cases[class_index]:
all_gt_boxes[class_index][image_id] = all_gt_boxes[class_index][image_id].clone().detach() #torch.tensor(all_gt_boxes[class_index][image_id])
return true_case_stat, all_gt_boxes, all_difficult_cases
def compute_average_precision_per_class(self, num_true_cases, gt_boxes, difficult_cases,
prediction_file, iou_threshold, use_2007_metric):
with open(prediction_file) as f:
image_ids = []
boxes = []
scores = []
for line in f:
t = line.rstrip().split("\t")
image_ids.append(t[0])
scores.append(float(t[1]))
box = torch.tensor([float(v) for v in t[2:]]).unsqueeze(0)
box -= 1.0 # convert to python format where indexes start from 0
boxes.append(box)
scores = np.array(scores)
sorted_indexes = np.argsort(-scores)
boxes = [boxes[i] for i in sorted_indexes]
image_ids = [image_ids[i] for i in sorted_indexes]
true_positive = np.zeros(len(image_ids))
false_positive = np.zeros(len(image_ids))
matched = set()
for i, image_id in enumerate(image_ids):
box = boxes[i]
if image_id not in gt_boxes:
false_positive[i] = 1
continue
gt_box = gt_boxes[image_id]
ious = box_utils.iou_of(box, gt_box)
max_iou = torch.max(ious).item()
max_arg = torch.argmax(ious).item()
if max_iou > iou_threshold:
if difficult_cases[image_id][max_arg] == 0:
if (image_id, max_arg) not in matched:
true_positive[i] = 1
matched.add((image_id, max_arg))
else:
false_positive[i] = 1
else:
false_positive[i] = 1
true_positive = true_positive.cumsum()
false_positive = false_positive.cumsum()
precision = true_positive / (true_positive + false_positive)
recall = true_positive / num_true_cases
if use_2007_metric:
return measurements.compute_voc2007_average_precision(precision, recall)
else:
return measurements.compute_average_precision(precision, recall)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="SSD Evaluation on VOC Dataset.")
parser.add_argument('--net', default="vgg16-ssd", help="The network architecture, it should be of mb1-ssd, mb1-ssd-lite, mb2-ssd-lite or vgg16-ssd.")
parser.add_argument("--model", type=str, help="Path to the trained PyTorch checkpoint")
parser.add_argument("--dataset_type", default="voc", type=str, help="Specify dataset type. Currently support voc and open_images.")
parser.add_argument("--dataset", type=str, help="The root directory of the VOC dataset or Open Images dataset.")
parser.add_argument("--label_file", type=str, help="The label file path.")
parser.add_argument("--use_cuda", type=str2bool, default=True)
parser.add_argument("--use_2007_metric", type=str2bool, default=True)
parser.add_argument("--nms_method", type=str, default="hard")
parser.add_argument("--iou_threshold", type=float, default=0.5, help="The threshold of Intersection over Union.")
parser.add_argument("--eval_dir", default="models/eval_results", type=str, help="The directory to store evaluation results.")
parser.add_argument('--mb2_width_mult', default=1.0, type=float,
help='Width Multiplifier for MobilenetV2')
args = parser.parse_args()
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() and args.use_cuda else "cpu")
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG, format='%(asctime)s - %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
# load the dataset
if args.dataset_type == "voc":
dataset = VOCDataset(args.dataset, is_test=True)
elif args.dataset_type == 'open_images':
dataset = OpenImagesDataset(args.dataset, dataset_type="test")
# create the network
if args.net == 'vgg16-ssd':
net = create_vgg_ssd(len(dataset.class_names), is_test=True)
elif args.net == 'mb1-ssd':
net = create_mobilenetv1_ssd(len(dataset.class_names), is_test=True)
elif args.net == 'mb1-ssd-lite':
net = create_mobilenetv1_ssd_lite(len(dataset.class_names), is_test=True)
elif args.net == 'sq-ssd-lite':
net = create_squeezenet_ssd_lite(len(dataset.class_names), is_test=True)
elif args.net == 'mb2-ssd-lite':
net = create_mobilenetv2_ssd_lite(len(dataset.class_names), width_mult=args.mb2_width_mult, is_test=True)
else:
logging.fatal(f"Invalid network architecture type '{arch}' - it should be one of: vgg16-ssd, mb1-ssd, mb1-ssd-lite, mb2-ssd-lite, sq-ssd-lite")
parser.print_help(sys.stderr)
sys.exit(1)
# load the model
logging.info(f"loading model {args.model}")
net.load(args.model)
net = net.to(DEVICE)
logging.info(f"loaded model {args.model}")
# eval the mAP
eval = MeanAPEvaluator(dataset, net, arch=args.net, eval_dir=args.eval_dir,
nms_method=args.nms_method, iou_threshold=args.iou_threshold,
use_2007_metric=args.use_2007_metric, device=DEVICE)
mean_ap, class_ap = eval.compute()
eval.log_results(mean_ap, class_ap)