- master
- 0.11.6 (2020-06-15)
- circular truncation for CifHr
- extend Guide
- 0.11.4 (2020-06-02)
- init Guide
- minor updates
- 0.11.3 (2020-06-01)
- new debug message for "neural network device" (to check cpu versus gpu usage)
- debug output without plots is default; enable debug plots with new
--debug-images
- 0.11.2 (2020-05-29)
- pretrained resnet50 model
- fix CUDA support in
openpifpaf.video
- add
--version
option to all CLIs
- 0.11.0 (2020-05-12)
- major refactor
- now requires Python>=3.6 for type annotations
- new ShuffleNetV2 models:
shufflenetv2k16w
andshufflenetv2k30w
- 64bit loss and Focal Loss for confidences
- fast fused convolutions for
CompositeHeadFused
- new handling of crowd annotations in encoder
- new
--extended-scale
training and eval-coco option - decoding with frontier is default
- more robust blending of connection candidates
- introduced
openpifpaf.visualizer
and many improvements to visualization - [experimental] new
cocodet
dataset interface for detections
- 0.10.1 (2019-12-09)
- faster decoder
- refactored scale generation between loss and encoder
- 0.10.0 (2019-10-21)
- major refactor: move all factory-code into factories
- new experimental decoder
- improved image rescaling randomization
- module-level logging
- index-matching bug fixed by @junedgar #147
- tests for Windows, PyTorch 1.3 and with pylint 2.4
- 0.9.0 (2019-07-30)
- 0.8.0 (2019-07-08)
- add support for
resnext50
,shufflenetv2x1
andshufflenetv2x2
- new pretrained models
- new transforms.RandomApply() and transforms.RotateBy90(); removed old transforms
- new blur augmentation
- improved BCE masks #87
- add support for
- 0.7.0 (2019-06-06)
- faster seed generation in decoder
- training log plot improvements (labels, consistent colors)
- improved debug visualizer for decoder
- 0.6.3 (2019-05-28)
- support parallel decoding for
predict
andeval_coco
(~4x speed improvement) which is automatically activated for batch sizes larger than 1
- support parallel decoding for
- 0.6.2 (2019-05-23)
- 0.6.1 (2019-05-13)
- 0.6.0 (2019-05-07)
- Torch 1.1.0 compatibility (older versions work but have modified learning rate schedule due to pytorch/pytorch#7889)
- more aggressive NMS
- multi-scale support for
eval_coco
:--two-scale
,--three-scale
,--multi-scale
- guaranteed complete poses with
--force-complete-pose
- 0.5.1 (2019-05-01)