-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.ino
219 lines (199 loc) · 5.63 KB
/
functions.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Pick a development process using the LCD/Buttons
byte pickProcess()
{
// Selected process (by array index)
byte processIndex = 0;
byte button = 0;
while(true)
{
while(!button)
button = wait("Dev for", process[processIndex].name);
if (button & BUTTON_UP)
{
++processIndex;
if(processIndex > processCount - 1)
processIndex = 0;
}
if (button & BUTTON_DOWN)
--processIndex;
// Greater than because we are using a byte so we need to check
// for overflow rather than negative numbers.
if(processIndex > processCount - 1)
processIndex = processCount - 1;
if (button & BUTTON_SELECT)
return processIndex;
button = 0;
delay(250);
Serial.print("Index: ");
Serial.println(processIndex);
}
}
// Run a development step
void processStep(DevStep step, byte motorSpeed, byte motorDirectionInterval, int targetTemperature)
{
unsigned long currentMillis = millis();
unsigned long previousMillis = 0;
long timeRemainingMS = long(step.duration) * SECONDS_MS;
int currentTemperature = collectTemperatures();
byte tempUpdateCycle = 0;
byte motorUpdateCycle = 0;
byte motorDirection = FORWARD;
Serial.println(step.duration);
Serial.println(motorSpeed);
Serial.println(targetTemperature);
Serial.println(currentTemperature);
Serial.println(timeRemainingMS);
lcd.setBacklight(step.color);
lcd.print(step.name);
while(timeRemainingMS >= 0)
{
currentMillis = millis();
controlTemp();
// Update once a second
if(currentMillis - previousMillis >= SECONDS_MS)
{
Serial.print("Time remaining: ");
Serial.println(timeRemainingMS);
// Every 10 seconds, check temperature
if(tempUpdateCycle > TEMP_UPDATE_INTERVAL - 1)
{
currentTemperature = collectTemperatures();
tempUpdateCycle = 0;
Serial.print("Temperature: ");
Serial.println(currentTemperature);
}
else
++tempUpdateCycle;
controlMotor(motorSpeed, motorDirectionInterval);
updateDisplay(int(timeRemainingMS / SECONDS_MS), currentTemperature);
timeRemainingMS -= SECONDS_MS;
previousMillis = millis();
}
}
}
// Run a full development process
void developFilm()
{
pickedProcess = pickProcess();
currentProcess = process[pickedProcess];
wait(currentProcess.name, "Press Any Key");
controlMotor(0, 0);
// After picking a process, pre-heat then start dev
targetTemperature = currentProcess.targetTemperature;
preheat();
for(byte i = 0 ; i < currentProcess.steps; ++i)
{
processStep(currentProcess.devStep[i],
currentProcess.motorSpeed,
currentProcess.motorDirectionInterval,
currentProcess.targetTemperature);
Serial.println("Motor: Stopping");
controlMotor(0, 0);
Serial.println("done");
wait(currentProcess.devStep[i].name, "Complete");
}
lcd.setBacklight(GREEN);
wait("Dev Cycle", "Complete");
}
void preheat()
{
unsigned long previousMillis = 0;
byte button = 0;
char buffer[17];
char currentTempChar[6];
char targetTempChar[6];
while(true)
{
controlTemp();
if(millis() - previousMillis >= SECONDS_MS * TEMP_UPDATE_INTERVAL || button)
{
currentTemperature = collectTemperatures();
Serial.print("Current Temperature: ");
Serial.println(currentTemperature);
Serial.print("Target Temperature: ");
Serial.println(targetTemperature);
Serial.print("PID Output: ");
Serial.println(pidOutput);
/* Removing for now since for mixing chemicals we want it to still adjust
* temperatures (since heating the chemicals would bring the water
* temperature down over time).
if(currentTemperature == targetTemperature)
{
wait("Target", "Reached");
return;
}
else
{
*/
dtostrf(currentTemperature, 5, 2, currentTempChar);
dtostrf(targetTemperature, 5, 2, targetTempChar);
sprintf(buffer, "%sC / %sC", currentTempChar, targetTempChar);
//sprintf(buffer, "%02dC / %02dC", currentTemperature, targetTemperature);
drawDisplay("Preheating", buffer);
previousMillis = millis();
}
button = lcd.readButtons();
if(button & BUTTON_LEFT)
return;
if(button & BUTTON_UP)
targetTemperature += TEMP_ADJUSTMENT_PRECISION;
if(button & BUTTON_DOWN)
targetTemperature -= TEMP_ADJUSTMENT_PRECISION;
}
}
void controlTemp()
{
pid.Compute();
if (millis() - pidWindowStartTime > pidWindowSizeMS)
pidWindowStartTime += pidWindowSizeMS;
if (pidOutput > millis() - pidWindowStartTime)
{
if(heaterState != ON)
{
heaterState = ON;
Serial.println("Turned Heater On");
}
digitalWrite(heater, HIGH);
}
else
{
if(heaterState != OFF)
{
heaterState = OFF;
Serial.println("Turned Heater Off");
}
digitalWrite(heater, LOW);
}
}
void controlMotor(byte speed, byte directionInterval)
{
analogWrite(motorSpeed, speed);
if(directionInterval > 0)
{
if(millis() - previousMotorMillis >= SECONDS_MS * directionInterval)
{
if(motorDirection == FORWARD)
{
Serial.println("Motor: Reverse");
digitalWrite(motorX, LOW);
digitalWrite(motorY, HIGH);
motorDirection = REVERSE;
}
else
{
Serial.println("Motor: Forward");
digitalWrite(motorX, HIGH);
digitalWrite(motorY, LOW);
motorDirection = FORWARD;
}
previousMotorMillis = millis();
}
}
/* If directionInterval is zero, never change speed */
else
{
digitalWrite(motorX, HIGH);
digitalWrite(motorY, LOW);
motorDirection = FORWARD;
}
}