-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
826 lines (757 loc) · 42.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
# Libraries
# Catch warnings
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
from typing import Tuple
import data_loader as dataloader
import feature_importance as fimp
import save_output as sd
# import comp_plot as pcml
from sklearn.model_selection import train_test_split, RepeatedKFold, GridSearchCV
from sklearn.ensemble import ExtraTreesRegressor, BaggingRegressor, RandomForestRegressor, HistGradientBoostingRegressor, StackingRegressor, VotingRegressor
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression, BayesianRidge, ElasticNet, ARDRegression, OrthogonalMatchingPursuit
from sklearn.metrics import mean_absolute_error, max_error, explained_variance_score, mean_squared_error, mean_absolute_percentage_error
import lightgbm as ltb
import lazypredict
from lazypredict.Supervised import LazyRegressor
from sklearn.pipeline import Pipeline
import xgboost as xgb
from sklearn.neural_network import MLPRegressor
# import tensorflow as tf
# from tensorflow import keras
# from tensorflow.keras import layers
# from tensorflow.keras.models import load_model, save_model, Model
# from keras.models import load_model
import tempfile
import pickle
import joblib
import json
import matplotlib.pyplot as plt
from matplotlib import pyplot
import pandas as pd
import numpy as np
import seaborn as sns
import scipy
from statsmodels.distributions.empirical_distribution import ECDF
import os
import sys
from tqdm import tqdm
# FHG
# ---------------------------initialize --------------------------- #
class MlModel:
""" Main body of the machine learning model for estimating FHG
Parameters
Parameters
----------
custom_name : str
A custom name for the model to be extucuted
"""
def __init__(self, custom_name: str) -> None:
# os.chdir(b'/home/arash.rad/river_3d/conus-fhg/')
pd.options.display.max_columns = 30
self.custom_name = custom_name
self.rand_state = 105
self.grid_searches = {}
temp = json.load(open('data/model_feature_names.json'))
self.target_data_path = ""
self.train_x = pd.DataFrame([])
self.train_y = 0
self.train_id = 0
self.test_x = pd.DataFrame([])
self.test_y = 0
self.test_id = 0
self.train_sub_id = 0
self.x_train = 0
self.eval_id = 0
self.x_eval = 0
self.train_x_comp = pd.DataFrame([])
self.test_x_comp = pd.DataFrame([])
# ___________________________________________________
# Free memory
del temp
# ___________________________________________________
# Check directories if not present create one
if not os.path.isdir(os.path.join(os.getcwd(),self.custom_name)):
os.mkdir(os.path.join(os.getcwd(),self.custom_name))
if not os.path.isdir(os.path.join(os.getcwd(),self.custom_name,'model/')):
os.mkdir(os.path.join(os.getcwd(),self.custom_name,'model/'))
if not os.path.isdir(os.path.join(os.getcwd(),self.custom_name,'metrics/')):
os.mkdir(os.path.join(os.getcwd(),self.custom_name,'metrics/'))
if not os.path.isdir(os.path.join(os.getcwd(),self.custom_name,'img/')):
os.mkdir(os.path.join(os.getcwd(),self.custom_name,'img/'))
if not os.path.isdir(os.path.join(os.getcwd(),self.custom_name,'img/model/')):
os.mkdir(os.path.join(os.getcwd(),self.custom_name,'img/model/'))
if not os.path.isdir(os.path.join(os.getcwd(),'cache/')):
os.mkdir(os.path.join(os.getcwd(),'cache/'))
# --------------------------- Load train and test data files --------------------------- #
def loadData(self, out_feature: str, x_transform: bool = False,
y_transform: bool = False, R2_thresh: float = 0.0, count_thresh: int = 3,
sample_type: str = "All", pca: bool = True, t_type: str = 'log',
train_type: str = "NWIS", sub_trans: bool = True) -> None:
""" Load the data and apply data filtering, transformation and
feature selection if nessassery
Parameters
----------
out_feature : str
Name of the FHG coeficients
x_transform : bool
Whether to apply transformation to predictor variables or not
Opptions are:
- True
- False
y_transform : bool
Whether to apply transformation to target variable or not
Opptions are:
- True
- False
R2_thresh : float
The desired coeficent of determation to filter out bad measurments
Opptions are:
- any value between 0.0 - 100.0
count_thresh: int
The desired number of observations in each station to filter out bad measurments
sample_type : str
The type of predictor feature selection
Opptions are:
- "All": for considering all features
- "Sub": for considering pre selected features
- "test": a test case for unit testing
pca: bool
Whether to apply PCA or not
Opptions are:
- True
- False
t_type: str
type of transformation
Opptions are:
- log
- power
- quant
train_type: str
type of model training
Opptions are:
- NWIS
- NWM
sub_trans: bool
apply trans only to pca
- True
- False
Example
--------
>>> MlModel.loadData(out_feature = 'b', x_transform = False,
y_transform = False, R2_thresh = 0.0,
sample_type = "Sub", pca = False, t_type = 'log',
train_type = 'NWM', sub_trans = True)
"""
# Bulid an instance of DataLoader object
data_path = ''
# New data here <---------------------
# if "TW_" in out_feature:
# data_path = self.target_data_path = 'data/width_tar_perd.parquet'
# elif "Y_" in out_feature:
# data_path = self.target_data_path = 'data/depth_tar_perd.parquet'
# ------------------------------------
if train_type == "NWIS" and "TW_" in out_feature:
data_path = self.target_data_path = 'data/nwis_width_pred_tar_up.parquet'
elif train_type == "NWIS" and "Y_" in out_feature:
data_path = self.target_data_path = 'data/nwis_depth_pred_tar_up.parquet'
elif train_type == "NWM" and "TW_" in out_feature:
data_path = self.target_data_path = 'data/nwm_width_pred_tar_up.parquet'
elif train_type == "NWM" and "Y_" in out_feature:
data_path = self.target_data_path = 'data/nwm_depth_pred_tar_up.parquet'
data_loader = dataloader.DataLoader(data_path=data_path,
target_data_path=self.target_data_path,
rand_state=self.rand_state,
out_feature=out_feature,
custom_name=self.custom_name,
x_transform=x_transform, y_transform=y_transform,
R2_thresh=R2_thresh, count_thresh=count_thresh,
sample_type=sample_type, train_type=train_type)
data_loader.readFiles()
data_loader.splitData()
self.train_x, self.train_y, self.train_id, self.test_x, self.test_y, self.test_id = data_loader.transformData(t_type=t_type, sub_trans=sub_trans, plot_dist=False)
if pca:
self.train_x, self.test_x, self.train_x_comp, self.test_x_comp = data_loader.reduceDim(self.train_x, self.test_x)
self.train_x_comp = pd.concat([self.train_x_comp, self.train_id], axis=1)
self.test_x_comp = pd.concat([self.test_x_comp, self.test_id], axis=1)
# --------------------------- Grid Search --------------------------- #
def findBestParams(self, out_features: str = 'TW_bf', nthreads: int = -1, space: str = 'actual_space',
weighted: bool = False) -> Tuple[str, dict, pd.DataFrame, dict]:
""" Find the best parameters of the all ML models through k-fold
cross validation and prevent overfit
Parameters
----------
out_features : str
Name of the FHG coeficients
nthreads : int
Number of cores to be engaged in k-fold
space : str
For unit testing: Whether to use complete paramter space or a
small subset of it
Opptions are:
- "actual_space"
- "test_space"
weighted : bool
Whether to apply weighted learning or not
Opptions are:
- True
- False
Outputs
----------
best_model : str
The name of the best model identified during k-fold
best_params : dict
A dictionary containg all parametrs of the best model after training
best_models : pandas.DataFrame
A dataframe containg names and all parametrs of the top models after training
Example
--------
>>> MlModel.findBestParams(out_features = 'b', nthreads = -1, space: 'actual_space',
weighted = False)
"""
# Check if it is a weighted learning
if weighted:
t_y = pickle.load(open(self.custom_name+'/model/'+'train_y_'+out_features+'_tansformation.pkl', "rb"))
temp = t_y.inverse_transform(self.train_y.reshape(-1,1)).ravel()
y_weights = abs(temp - temp.mean())+0.1
else:
y_weights = None
fit_params = dict(sample_weight=y_weights)#, base_margin=np.abs(self.train_x[:, 1]))
# ___________________________________________________
# Build an isntance of each model with defaults
xgb_reg = xgb.XGBRegressor(seed=self.rand_state, nthread=nthreads)
xgb_cons_reg = xgb.XGBRegressor(seed=self.rand_state, nthread=nthreads)
rf_reg = RandomForestRegressor(random_state=self.rand_state, n_jobs=nthreads)
hgb_reg = HistGradientBoostingRegressor(random_state=self.rand_state)
lgb_reg = ltb.LGBMRegressor(random_state=self.rand_state, n_jobs=nthreads)
bsvr_reg = BaggingRegressor(estimator=SVR(),
n_jobs=nthreads, random_state=self.rand_state)
knr_reg = KNeighborsRegressor(n_jobs=nthreads)
ard_reg = ARDRegression()
enet_reg = ElasticNet(random_state=self.rand_state)
mlp_reg = MLPRegressor(random_state=self.rand_state)
bays_reg = BayesianRidge()
# orth_reg = OrthogonalMatchingPursuit()
# ___________________________________________________
# Define models and paramters
params_space = json.load(open('model_space/params_space.json'))
models = {
'xgb': xgb_reg,
'rf': rf_reg,
'hgb': hgb_reg,
'lgb': lgb_reg,
# 'bsvr': bsvr_reg,
# 'knr': knr_reg,
# 'ard': ard_reg,
# 'enet': enet_reg,
# 'mlp': mlp_reg,
# 'bays': bays_reg
# 'orth': orth_reg
}
params = {
'xgb': params_space.get(space).get('xgb_params'),
'rf': params_space.get(space).get('rf_params'),
'hgb': params_space.get(space).get('hgb_params'),
'lgb': params_space.get(space).get('lgb_params'),
# 'bsvr': params_space.get(space).get('bsvr_params'),
# 'knr': params_space.get(space).get('knr_params'),
# 'ard': params_space.get(space).get('ard_params'),
# 'enet': params_space.get(space).get('enet_params'),
# 'mlp': params_space.get(space).get('mlp_params'),
# 'bays': params_space.get(space).get('bays_params')
# 'orth': params_space.get(space).get('orth_params')
}
# ___________________________________________________
# Do a k-fold cross validation on models
cv = RepeatedKFold(n_splits = 5, n_repeats = 3, random_state = self.rand_state)
for model_key in models.keys():
print('Running GridSearchCV for model: %s.' % model_key)
model = models[model_key]
param = params[model_key]
def deval_f(x):
try:
ans = eval(str(x))
except:
ans = x
return ans
for k,v in param.items():
temp = []
for x in v:
temp.append(deval_f(x))
param[k] = temp
del temp
grid_search = GridSearchCV(estimator=model, param_grid=param, n_jobs = nthreads, cv = cv,
scoring="neg_mean_squared_error") # neg_root_mean_squared_error
if model_key == 'ard' or model_key == 'knr' or model_key == 'mlp':
grid_search.fit(self.train_x, self.train_y)
else:
grid_search.fit(self.train_x, self.train_y, **fit_params)
joblib.dump(grid_search, self.custom_name+'/model/'+str(self.custom_name)+'_'+out_features+'_'+str(model_key)+'_gridsearch.pkl')
self.grid_searches[model_key] = grid_search
print('GridSearchCV complete.')
# ___________________________________________________
# Find best model and parmaters to pass on
frames = []
sort_by = 'mean_test_score'
for name, grid_search in self.grid_searches.items():
frame = pd.DataFrame(grid_search.cv_results_)
frame = frame.filter(regex='^(?!.*param_).*$')
frame['estimator'] = len(frame)*[name]
frames.append(frame)
df = pd.concat(frames)
df = df.sort_values([sort_by], ascending=False)
df = df.reset_index()
df = df.drop(['rank_test_score', 'index'], 1)
columns = df.columns.tolist()
columns.remove('estimator')
columns = ['estimator']+columns
df = df[columns]
# ___________________________________________________
# return the best
best_model = df.iloc[0].get('estimator')
best_params = df.iloc[0].get('params')
print("best model {0}".format(best_model))
print("best params {0}".format(best_params))
# ___________________________________________________
# return the xgb
# xgb_model = df[df['estimator'] == 'xgb'].iloc[0].get('estimator')
xgb_params = df[df['estimator'] == 'xgb'].iloc[0].get('params')
# ___________________________________________________
# get best of all models
best_models = df.loc[df.groupby("estimator")[sort_by].idxmax()]
best_models = best_models[['estimator', sort_by, 'params']]
return best_model, best_params, best_models, xgb_params
# --------------------------- Run Best Model --------------------------- #
def runMlModel(self, best_model: str, best_params: dict, best_models: pd.DataFrame, xgb_params: dict,
weighted: bool, out_features: str, nthreads: int = -1) -> Tuple[any,
any,
VotingRegressor,
StackingRegressor,
pd.DataFrame,
np.array,
pd.DataFrame,
np.array]:
""" Train the ML models based on k-fold results
Parameters
----------
best_model : str
Name of the best ML model
best_params : dict
A dictionary containing estiamted parameters
best_models : pd.DataFrame
A dataframe containg top models and their parameter space
weighted : bool
Whether to apply weighted learning or not
Opptions are:
- True
- False
out_features : str
Name of the FHG coeficients
nthreads : int
Number of cores to be engaged in training
Outputs
----------
loaded_model : any
model structure and weights
voting_model : VotingRegressor
model structure and weights
meta_model : StackingRegressor
model structure and weights
self.train_x : pd.DataFrame
splited predictor data for training
self.train_y : np.array
splited target data for training
self.test_x : pd.DataFrame
splited predictor data for testing
self.test_y : np.array
splited target data for testing
Example
--------
>>> MlModel.runMlModel(best_model, best_params, best_models,
weighted = True, out_features = 'b', nthreads = -1)
"""
def rsquared(obs: np.array, pred: np.array) -> float:
""" Return R^2 where obs and pred are array
Parameters
----------
obs : np.array
A numpy array containing true values
pred : np.array
A numpy array containing estimated values
Outputs
----------
r_value**2 : flaot
The value of coeficient of determination
Example
--------
>>> r2 = rsquared(obs, pred)
"""
slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(obs, pred)
return r_value**2
# ___________________________________________________
# Custom objective function
# def custom_eval(y_pred, dtrain):
# y_true = dtrain.get_label()
# err = 1-f1_score(y_true, np.round(y_pred))
# return 'custom_eval', err
# ___________________________________________________
# Prepare models and split data
model_obj = ModelSwitch(self.rand_state, nthreads)
loaded_model = model_obj.modelName(best_model, best_params)
concated_x = pd.concat([self.train_x, self.train_id], axis=1)
# concated_y = pd.concat([self.train_y, self.train_id], axis=1)
self.x_train, self.x_eval, self.y_train, self.y_eval = train_test_split(concated_x, self.train_y, test_size=0.15,
random_state=self.rand_state)
self.train_sub_id = self.x_train[['siteID', 'R2']]
self.train_sub_id = self.train_sub_id.reset_index(drop=True)
self.x_train = self.x_train.loc[:, ~self.x_train.columns.isin(['siteID', 'R2'])]
self.x_train = self.x_train.reset_index(drop=True)
self.eval_id = self.x_eval[['siteID', 'R2']]
self.eval_id = self.eval_id.reset_index(drop=True)
self.x_eval = self.x_eval.loc[:, ~self.x_eval.columns.isin(['siteID', 'R2'])]
self.x_eval = self.x_eval.reset_index(drop=True)
# ___________________________________________________
# Out of the box evaluation of models
# Fit all models
reg_models = lazypredict.Supervised.REGRESSORS
lazypredict.Supervised.REGRESSORS = [t for t in reg_models if not t[0].startswith('Quantile')]
ob_reg = LazyRegressor(predictions=True)
models, predictions = ob_reg.fit(self.x_train, self.x_eval, self.y_train, self.y_eval)
print('\n out of the box evaluation of models for target: '+str(self.custom_name)+ '\n')
print(models)
# ___________________________________________________
# Check witch models are used with weights and fit
eval_set = [(self.x_train, self.y_train), (self.x_eval, self.y_eval)]
if weighted:
t_y = pickle.load(open(self.custom_name+'/model/'+'train_y_'+out_features+'_tansformation.pkl', "rb"))
temp = t_y.inverse_transform(self.y_train.reshape(-1,1)).ravel()
y_weights = abs(temp - temp.mean())+0.1
else:
y_weights = None
fit_params = dict(sample_weight=y_weights)
if best_model == 'xgb':
loaded_model.fit(self.x_train, self.y_train, eval_set=eval_set,
early_stopping_rounds=0.1*best_params['n_estimators'], verbose=False, **fit_params) #, eval_metric=["mae", "rmse"]
elif best_model == 'ard' or best_model == 'knr' or best_model == 'mlp':
loaded_model.fit(self.x_train, self.y_train)
else:
loaded_model.fit(self.x_train, self.y_train, **fit_params)
train_columns = self.x_train.columns.tolist()
# ___________________________________________________
# Predict
preds_t = loaded_model.predict(self.x_train)
rs_DNN_t = round(rsquared(self.y_train, preds_t.flatten()), 2)
print("best Training acc {0}".format(rs_DNN_t))
# ___________________________________________________
# save model to file
pickle.dump(loaded_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_"+str(best_model)+"_Best_Model.pickle.dat", "wb"))
# load model from file
# loaded_model = pickle.load(open("model/"+out_features+"_gb_model.pickle.dat", "rb"))
# ___________________________________________________
# Constrained models
dtrain = xgb.DMatrix(self.x_train, label=self.y_train)
dtest = xgb.DMatrix(self.x_eval, label=self.y_eval)
constrained_model = np.nan
def constrained_mse_obj(preds, dtrain):
# labels = dtrain.get_label()
labels = np.clip(dtrain.get_label(), 0, 250) # Constrain labels between 0 and 250
preds = np.clip(preds, 0, 250) # Constrain predictions between 0 and 250
errors = preds - labels
gradient = errors
hessian = np.ones_like(gradient)
return gradient, hessian
# constrained_model = xgb.train(xgb_params, dtrain, evals=[(dtest, 'test')],
# #early_stopping_rounds=0.1*xgb_params['n_estimators'])
# obj=lambda preds, dtrain: constrained_mse_obj(preds, dtrain))
# constrained_model = model_obj.modelName('xgb_const', xgb_params)
# constrained_model.fit(dtrain, eval_set=[(dtest, 'test')],
# early_stopping_rounds=0.1*best_params['n_estimators'], verbose=False, **fit_params)
# Predict
# preds_t = constrained_model.predict(dtrain)
# rs_DNN_t = round(rsquared(self.y_train, preds_t.flatten()), 2)
# print("Constrained Training acc {0}".format(rs_DNN_t))
# ___________________________________________________
# Meta learner & voting
def loadBaseModel(model_df):
temp_model_obj = ModelSwitch(self.rand_state, nthreads)
return temp_model_obj.modelName(model_df["estimator"].values[0], model_df["params"].values[0])
base_model = list()
temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'xgb'])
base_model.append(('xgb', temp))
temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'rf'])
base_model.append(('rf', temp))
temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'hgb'])
base_model.append(('hgb', temp))
temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'lgb'])
base_model.append(('lgb', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'bsvr'])
# base_model.append(('bsvr', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'knr'])
# base_model.append(('knr', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'ard'])
# base_model.append(('ard', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'enet'])
# base_model.append(('enet', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'mlp'])
# base_model.append(('mlp', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'bays'])
# base_model.append(('bays', temp))
# temp = loadBaseModel(best_models.loc[best_models['estimator'] == 'orth'])
# base_model.append(('orth', temp))
top_model = RandomForestRegressor(random_state=self.rand_state, n_jobs=nthreads,
max_depth=9, max_features='log2', max_samples=0.6, n_estimators=13000)#ExtraTreesRegressor(random_state=self.rand_state, n_jobs=nthreads)#LinearRegression()
# top_model = RandomForestRegressor(random_state=self.rand_state, n_jobs=nthreads,
# max_depth=2, max_features='log2', max_samples=0.6, n_estimators=100)
voting_model = VotingRegressor(estimators=base_model, n_jobs=nthreads)
meta_model = StackingRegressor(estimators=base_model, final_estimator=top_model, cv=5,
passthrough=True, n_jobs=nthreads)
voting_model.fit(self.x_train, self.y_train)
meta_model.fit(self.x_train, self.y_train)
# ___________________________________________________
# Save meta learner & voting
pickle.dump(voting_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_Voting_Model.pickle.dat", "wb"))
pickle.dump(meta_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_Meta_Model.pickle.dat", "wb"))
return loaded_model, constrained_model, voting_model, meta_model, train_columns, self.x_train, self.y_train, self.test_x, self.test_y
def finalFits(self, ml_model: any, constrained_model: any, voting_model: VotingRegressor, meta_model: StackingRegressor,
out_features: str, best_model: str) -> None:
concated_x = pd.concat([self.train_x, self.test_x], axis=0)
concated_x = concated_x.reset_index(drop=True)
concated_y = np.concatenate([self.train_y, self.test_y])
ml_model.fit(concated_x, concated_y)
# constrained_model.fit(xgb.DMatrix(concated_x, label=concated_y))
voting_model.fit(concated_x, concated_y)
meta_model.fit(concated_x, concated_y)
# Lets keep record on input varibales and order
def preserve_order(item):
return {"value": item}
# Convert the list elements into a JSON-serializable format with ordered keys
serialized_list = [preserve_order(item) for item in concated_x.columns]
# Save the list to a JSON file
with open('model_space/model_feats'+'_'+out_features+'_'+'.json', 'w') as json_file:
json.dump(serialized_list, json_file, indent=4)
# Test
# serialized_list = [preserve_order(item) for item in ml_model.feature_names_in_]
# with open('model_space/model_feats'+'_'+out_features+'_2'+'.json', 'w') as json_file:
# json.dump(serialized_list, json_file, indent=4)
# Save models
pickle.dump(ml_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_"+str(best_model)+"_final_Best_Model.pickle.dat", "wb"))
# pickle.dump(constrained_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_xgb_constrained_final_Best_Model.pickle.dat", "wb"))
pickle.dump(voting_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_final_Voting_Model.pickle.dat", "wb"))
pickle.dump(meta_model, open(self.custom_name+"/model/"+str(self.custom_name)+'_'+out_features+"_final_Meta_Model.pickle.dat", "wb"))
return
# --------------------------- Model Switcher --------------------------- #
class ModelSwitch:
def __init__(self, rand_state : int, nthreads : int) -> None:
""" A calss object to load best parameters into
ML models
Parameters
----------
rand_state : int
Random state ssnumber
nthreads : int
Number of cores to be used
"""
self.rand_state = rand_state
self.nthreads = nthreads
def modelName(self, model, best_params):
default = "Incorrect model"
return getattr(self, str(model), lambda: default)(best_params)
def xgb_const(self, best_params):
return xgb.XGBRegressor(random_state = self.rand_state, learning_rate = best_params['learning_rate'],
max_depth = best_params['max_depth'], n_estimators = best_params['n_estimators'],
colsample_bytree = best_params['colsample_bytree'], nthread=self.nthreads,
min_child_weight = best_params['min_child_weight'], gamma = best_params['gamma'],
subsample = best_params['subsample'])#, objective = 'reg:squarederror')
def xgb(self, best_params):
return xgb.XGBRegressor(random_state = self.rand_state, learning_rate = best_params['learning_rate'],
max_depth = best_params['max_depth'], n_estimators = best_params['n_estimators'],
colsample_bytree = best_params['colsample_bytree'], nthread=self.nthreads,
min_child_weight = best_params['min_child_weight'], gamma = best_params['gamma'],
subsample = best_params['subsample'])#, objective = 'reg:linear')
def rf(self, best_params):
return RandomForestRegressor(random_state=self.rand_state, n_jobs=self.nthreads,
max_depth = best_params['max_depth'], max_features = best_params['max_features'],
n_estimators = best_params['n_estimators'], max_samples = best_params['max_samples'])
def hgb(self, best_params):
return HistGradientBoostingRegressor(random_state=self.rand_state,
learning_rate = best_params['learning_rate'], max_iter = best_params['max_iter'],
max_depth = best_params['max_depth'], l2_regularization = best_params['l2_regularization'],
min_samples_leaf = best_params['min_samples_leaf'])
def lgb(self, best_params):
return ltb.LGBMRegressor(random_state=self.rand_state, n_jobs=self.nthreads,
learning_rate = best_params['learning_rate'], n_estimators = best_params['n_estimators'],
max_depth = best_params['max_depth'], reg_alpha = best_params['reg_alpha'],
reg_lambda = best_params['reg_lambda'], colsample_bytree = best_params['colsample_bytree'],
subsample = best_params['subsample'])
def bsvr(self, best_params):
return BaggingRegressor(estimator=SVR(), n_jobs=self.nthreads, random_state=self.rand_state,
n_estimators = best_params['n_estimators'], max_features = best_params['max_features'],
max_samples = best_params['max_samples'])
def knr(self, best_params):
return KNeighborsRegressor(n_jobs=self.nthreads,
n_neighbors = best_params['n_neighbors'], algorithm = best_params['algorithm'])
def ard(self, best_params):
return ARDRegression(n_iter = best_params['n_iter'], tol = best_params['tol'],
alpha_1 = best_params['alpha_1'], alpha_2 = best_params['alpha_2'],
lambda_1 = best_params['lambda_1'], lambda_2 = best_params['lambda_2'],
fit_intercept = best_params['fit_intercept'])
def orth(self, best_params):
return OrthogonalMatchingPursuit(n_nonzero_coefs = best_params['n_nonzero_coefs'], tol = best_params['tol'],
fit_intercept = best_params['fit_intercept'],# normalize = best_params['normalize'],
precompute = best_params['precompute'])
def enet(self, best_params):
return ElasticNet(l1_ratio = best_params['l1_ratio'],
alpha = best_params['alpha'], fit_intercept = best_params['fit_intercept'],
max_iter = best_params['max_iter'], tol = best_params['tol'])
def mlp(self, best_params):
return MLPRegressor(hidden_layer_sizes = best_params['hidden_layer_sizes'], activation = best_params['activation'],
solver = best_params['solver'], alpha = best_params['alpha'],
batch_size = best_params['batch_size'], learning_rate = best_params['learning_rate'],
learning_rate_init = best_params['learning_rate_init'], max_iter = best_params['max_iter'])
def bays(self, best_params):
return BayesianRidge(n_iter = best_params['n_iter'], tol = best_params['tol'],
alpha_1 = best_params['alpha_1'], alpha_2 = best_params['alpha_2'],
lambda_1 = best_params['lambda_1'], lambda_2 = best_params['lambda_2'],
fit_intercept = best_params['fit_intercept'])
# --------------------------- A driver class --------------------------- #
class RunMlModel:
@staticmethod
def main(argv):
""" The driver class to run ML model
Parameters
----------
argv: list
taken from bash script
"""
custom_name = argv[0]
nthreads = int(argv[1])
x_transform = eval(argv[2])
y_transform = eval(argv[3])
R2_thresh = float(argv[4])
count_thresh = int(argv[5])
space = 'actual_space' # actual_space / test_space
SI = False # SI system
sample_type = "Sub" #"All", "Sub", "test"
weighted = False
sub_trans = True
pca = True
t_type = 's_scaler' # 'log', 'power', 'quant'
train_type = 'NWM' # 'NWM', 'NWIS'
if sample_type == "Sub" and pca:
sample_type = "Sub_pca"
if sample_type == "All" and pca:
sample_type = "All_pca"
# List of traget varaibles
# temp = json.load(open('data/ml_model_feature_names.json'))
# del temp
# ___________________________________________________
# Bulid an instance of MlModel object and itterate through targets
model = MlModel(custom_name)
# temporary holder
temp = json.load(open('data/model_feature_names.json'))
target_list = temp.get('out_features')
del temp
# target_list=['Y_in']
for target_name in tqdm(target_list):
if target_name == "Y_bf":
R2_thresh = 0.01 #---------# #NWM 0.6 #NWIS 0.85
count_thresh = 3 #---------# #NWM 10 #NWIS 5
x_transform = False #---------# #NWM False #NWIS False
y_transform = True #---------# #NWM False #NWIS False
elif target_name == "Y_in":
R2_thresh = 0.01 #---------# #NWM 0.6 #NWIS 0.85
count_thresh = 3 #---------# #NWM 10 #NWIS 5
x_transform = False #---------# #NWM False #NWIS False
y_transform = True #---------# #NWM False #NWIS False
elif target_name == "TW_bf":
R2_thresh = 0.01 #---------# #NWM 0.2 #NWIS 0.2
count_thresh = 3 #---------# #NWM 8 #NWIS 8
x_transform = False #---------# #NWM False #NWIS False
y_transform = True #---------# #NWM False #NWIS False
elif target_name == "TW_in":
R2_thresh = 0.01 #NWM 0.5#---------# #NWM 0.3 #NWIS 0.2
count_thresh = 3 #NWM 10 #---------# #NWM 6 #NWIS 8
x_transform = False #NWM False#---------# #NWM True #NWIS False
y_transform = True #NWM False #---------# #NWM True #NWIS False
# ___________________________________________________
# Train models
print('\n******************* modeling parameter {0} starts here *******************\n'.format(target_name))
print("R2_thresh > {0}".format(R2_thresh))
print("count_thresh > {0}".format(count_thresh))
print("x_transform > {0}".format(x_transform))
print("y_transform > {0}".format(y_transform))
model.loadData(out_feature=target_name, x_transform=x_transform,
y_transform=y_transform, R2_thresh=R2_thresh, count_thresh=count_thresh,
sample_type=sample_type, pca=pca, t_type=t_type, train_type=train_type, sub_trans=sub_trans)
print('end')
best_model, best_params, best_models, xgb_params = model.findBestParams(out_features=target_name, nthreads=nthreads,
space=space, weighted=weighted)
best_model_orig = best_model
ml_model, constrained_model, voting_model, meta_model, train_columns, train_x, train_y, _, _, = model.runMlModel(best_model=best_model, best_params=best_params,
xgb_params=xgb_params, best_models=best_models, weighted=weighted, out_features=target_name, nthreads=nthreads)
print('\n----------------- Results for best model -------------------\n')
# # ___________________________________________________
# # # save best model fit
x_train = model.train_x_comp[model.train_x_comp['siteID'].isin(model.train_sub_id['siteID'])]
x_eval = model.train_x_comp[model.train_x_comp['siteID'].isin(model.eval_id['siteID'])]
test_x = model.test_x_comp[model.test_x_comp['siteID'].isin(model.test_id['siteID'])]
x_train = x_train.reset_index(drop=True)
x_eval = x_eval.reset_index(drop=True)
test_x = test_x.reset_index(drop=True)
# train_columns = train_x.columns.tolist()
save_obj = sd.SaveOutput(train_id=model.train_sub_id, eval_id=model.eval_id, test_id=model.test_id,
x_train=x_train, x_eval=x_eval, test_x=test_x, train_columns=train_columns,
m_x_train = model.x_train, m_x_eval = model.x_eval, m_x_test = model.test_x,
y_train=model.y_train, y_eval=model.y_eval, test_y=model.test_y,
target_data_path = model.target_data_path, best_model=best_model, loaded_model=ml_model,
x_transform=x_transform, y_transform=y_transform, t_type=t_type,
out_feature=target_name, custom_name=custom_name, SI=SI)
save_obj.processData()
print('\n----------------- Results for vote model -------------------\n')
# ___________________________________________________
# save best model fit
best_model = 'vote'
save_obj = sd.SaveOutput(train_id=model.train_sub_id, eval_id=model.eval_id, test_id=model.test_id,
x_train=x_train, x_eval=x_eval, test_x=test_x, train_columns=train_columns,
m_x_train = model.x_train, m_x_eval = model.x_eval, m_x_test = model.test_x,
y_train=model.y_train, y_eval=model.y_eval, test_y=model.test_y,
target_data_path = model.target_data_path, best_model=best_model, loaded_model=voting_model,
x_transform=x_transform, y_transform=y_transform, t_type=t_type,
out_feature=target_name, custom_name=custom_name, SI=SI)
save_obj.processData()
print('\n----------------- Results for meta model -------------------\n')
# # ___________________________________________________
# # plot meta model fit
best_model = 'meta'
save_obj = sd.SaveOutput(train_id=model.train_sub_id, eval_id=model.eval_id, test_id=model.test_id,
x_train=x_train, x_eval=x_eval, test_x=test_x, train_columns=train_columns,
m_x_train = model.x_train, m_x_eval = model.x_eval, m_x_test = model.test_x,
y_train=model.y_train, y_eval=model.y_eval, test_y=model.test_y,
target_data_path = model.target_data_path, best_model=best_model, loaded_model=meta_model,
x_transform=x_transform, y_transform=y_transform, t_type=t_type,
out_feature=target_name, custom_name=custom_name, SI=SI)
save_obj.processData()
# ___________________________________________________
# Final training
model.finalFits(ml_model, constrained_model, voting_model, meta_model, target_name, best_model_orig)
print('\n----------------- Feature importance -------------------\n')
# ___________________________________________________
# plot feature importance
try:
fimp_object = fimp.FeatureImportance(custom_name, best_model)
fimp_object.plotImportance(model=ml_model, out_features=target_name,
train_x=train_x, train_y=train_y)
fimp_object.plotShapImportance(model=ml_model, out_features=target_name,
train_x=train_x)
except Exception as e:
print("An exception occurred due to shap internal errors!")
print(e)
print('\n**************** modeling parameter {0} ends here ****************\n'.format(target_name))
print('end')
if __name__ == "__main__":
# RunMlModel.main(['light_notrans_35', -1, "False", "False", 0.3, 5])
RunMlModel.main(sys.argv[1:])