-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcorr3.m
executable file
·197 lines (149 loc) · 6.15 KB
/
corr3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
function [R,porder,torder,pratio,tratio] =...
corr3(C1,D,E,L1,endmo,arord,k,kw,nhi)
% Returns matrix of corr coefs in R. Elements are product-moment
% correls between different types of series, depending on k.
%
% k=5 ppt vs temp
% k=6 tree.ppt vs temp.ppt, where y.x means residuals of linear
% regression of y against x.
% k=7 tree vs whitened ppt
% k=8 tree vs whitened temp
% k=9 whitened ppt vs whitened temp (whitened version of k=5)
% k=10 tree.(whitened ppt) vs (whitened temp).(whitened ppt)
% C1=tree has been previously prewhitened--the residuals from fitting the
% tree-ring index to a arord model.
% kw specifies whether ppt and temp series should be prewhitened
% before correlation analysis. kw=1: whiten kw=0: do not whiten.
%**************** ARGUMENTS ********************************
% D - monthly ppt array. Each row a year t. Each col a month.
% 36 cols represent three years. Col 1 is the year t.
% col 2 jan t-2
% col 3 feb t-2
% col 13 dec t-2
% col 14 jan t-1
% col 26 jan t
% col 37 dec t
% E - monthly temperature array
% C1 (cv) the tree-ring series, possibly prewhitened, depending
% L1 (cv) logical, specifying rows (years) of D and E for analysis.
% entries 1 for years to be included in the analysis,
% and 0 for years not to be included. If whitening (kw=1), the
% first n elements will be lopped off, where n is the maximum
% ar order of the model fit to the ppt and temp series for the
% particular ending month and number of months.
% endmo - ending month of tree-ring growth year. 1=jan, 12=dec.
% So if want to gear analysis to growth year ending in august of
% year t, set endmo=8.
% arord - order of AR model previously fit to tree-rings. If zero, the
% corr analysis is done using the non-prewhitened tree-ring index.
% kw: 1 prewhiten ppt and temp series
% 0 do not prewhiten temp and ppt series
% nhi: max ar order to consider fitting to ppt, temp series
%
%******************** CAUTIONS ******************************
% D and E should have been built so that cols 26-37 correspond to jan-dec of
% year t.
% D and E should not have missing values over the year range specified by
% L1
%******************** OUTPUT *********************************
% R matrix of partial correlations tree.ppt vs temp.ppt.
% The ending month of the monthly grouping varies down the rows.
% The number of months in the grouping varies across the cols.
% Example: assume endmo=8.
% Col 1 contains r between tree and one-month averages
% col 1, row 1 is for August of year t
% col 1, row 2 is for July of year t
% col 1,row 12 is for Sept of year t-1
% Col 2 contains r between tree and two-month averages
% col 2, row 1 is for July-Aug, year t
% col 2, row 2 is for June-July, year t
% col 2,row 12 is for Aug t-1 thu Sept t-1
% Col 12 contains r between tree and 12-month averages
% col 12, row 1 is for Sept t-1 thru Aug t
% col 12, row 2 is for Aug t1 thru July t
% col 12, row 12 is for Oct t-2 thru Sept t-1
% porder (12 x 12) order of ar model fit to ppt series. Monthly
% groupings as in R.
% torder (12 x 12) order of ar model fit to temp series.
% pratio (12 x 12) ratio of residual to original variance for ar
% models of ppt
% tratio (12 x 12) ratio of residual to original variance for ar
% models ot temp
%
% nn sample size (valid # yr) for corrl mtx
%********* PREALLOCATE *********************************************
R = zeros (12);
porder =zeros(12,12);
torder=zeros(12,12);
pratio=ones(12,12);
tratio=ones(12,12);
C2 = C1;
S5=zeros(sum(L1),12);
S5T=zeros(sum(L1),12);
lastmo=37- (12-endmo); % tie ending month to column of D
for k1=1:12; % loop for each number of months in seasonal grouping
top=lastmo-(k1-1):lastmo; % rv. Say [32 33] for k1 = 2,endmo=8
S1 = top(ones(12,1),:); % dupe rows of top
S2 = (0:11)';
S3 = S2 (:,ones(k1,1)); % dupe cols of S2
S4 = S1-S3;
for k2 = 1:12; % sum the clim variable over months
if k1==1; % special case for vector
S5(:,k2) = D(L1,S4(k2,:));
S5T(:,k2)=E(L1,S4(k2,:));
else
S5(:,k2) = (sum((D(L1,S4(k2,:)))'))';
S5T(:,k2)= (sum((E(L1,S4(k2,:)))'))';
end ; % of if loop
end; % of for loop k2
S5=dtrend(S5);
S5T=dtrend(S5T);
for k3=1:12; % loop for ending month for given number of months
if kw==0; % do not prewhiten climate data
W=S5(:,k3); % a ppt time series
V=S5T(:,k3); % a temperature time series
if k==6; % want partial corrs of tree.ppt vs temp.ppt
x=[ones(length(C2),1) W]\C2;
y=[ones(length(C2),1) W]\V;
W1=[ones(length(C2),1) W] * x -C2;
V1=[ones(length(C2),1) W] * y -V;
elseif k==5; % want corrs between ppt and temp
W1=W;
V1=V;
else
error('CALL TO CORR3 WITH kw=0 REQUIRES K=5 OR K=6');
end
nn=length(C2); % num of obs correls based on.
else; % kw=1, whiten the climate data before analysis.
[W,porder(k3,k1),pratio(k3,k1),arcs]=whit1(S5(:,k3),nhi,1);
[V,porder(k3,k1),pratio(k3,k1),arcs]=whit1(S5T(:,k3),nhi,1);
po=porder(k3,k1); % ar order for this ppt series
to= torder(k3,k1); % ar order for this temp series
ord = max([po to]); % maximum ar order for this ppt-temp pair
nn=length(C2)-ord;
if k==10 ; % want partial corrs of tree.ppt vs temp.ppt
x=[ones(nn,1) W(ord+1:length(C2))]\C2(ord+1:length(C2));
y=[ones(nn,1) W(ord+1:length(C2))]\V(ord+1:length(C2));
W1=[ones(nn,1) W(ord+1:length(C2))] * x -C2(ord+1:length(C2));
V1=[ones(nn,1) W(ord+1:length(C2))] * y -V(ord+1:length(C2));
elseif (k==9 | k==7 | k==8); % want corrs between
% whitened ppt and whitened temp, between tree and
% whitened ppt, or between tree and whitened temp.
W1=W(ord+1:length(C2));
V1=V(ord+1:length(C2));
else
error('CALL TO CORR3 WITH kw=1 REQUIRES K=7,8,9 or 10');
end
end; % of for-loop for prewhitening (kw==1)
if k~= 7 & k~= 8; % If correlations are between climate data only
r=corrcoef(W1,V1);
elseif k==7; % tree vs whitened ppt
r=corrcoef(C2(ord+1:length(C2)),W1);
elseif k==8; % tree vs whitened temp
r=corrcoef(C2(ord+1:length(C2)),V1);
end
R(k3,k1)=r(1,2);
end; % k3 for loop
disp(k1)
end; % of loop for k1