-
Notifications
You must be signed in to change notification settings - Fork 48
/
DeepQNetwork_Prius.py
361 lines (305 loc) · 14.6 KB
/
DeepQNetwork_Prius.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# -*- coding: utf-8 -*-
"""
DQN
"""
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import tensorflow.compat.v1 as tf
import numpy as np
from Prius_model_new import Prius_model
import scipy.io as scio
import matplotlib.pyplot as plt
from Priority_Replay import Memory, SumTree
##################### hyper parameters ####################
MAX_EPISODES = 1500
memory_capacity = 10000
batch_size = 64
learning_rate = 0.001
reward_decay = 0.9
e_greedy = 1
replace_target_iter = 300
e_greedy_increment = 0.00001
#e_greedy_increment = 0.000001
output_graph = False
np.random.seed(1)
tf.set_random_seed(1)
class DeepQNetwork():
def __init__(self, a_dim, s_dim):
self.a_dim = a_dim
self.s_dim = s_dim
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_capacity
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max
self.learn_step_counter = 0
self.memory = Memory(capacity = memory_capacity)
# self.memory = np.zeros((self.memory_size, self.s_dim * 2 + 2))
self.ISWeights = tf.placeholder(tf.float32, [None, 1], 'ISWeights')
self._build_net()
self.t_params = tf.get_collection('target_net_params')
self.e_params = tf.get_collection('eval_net_params')
self.replace_target_op = [tf.assign(t, e) for t, e in zip(self.t_params, self.e_params)]
# self.global_steps = tf.Variable(0, trainable=False)
# self.global_steps = 2000
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
self.t_params = self.sess.run(self.t_params)
self.e_params = self.sess.run(self.e_params)
self.cost_history = []
def _build_net(self):
#--------------------build eval_net------------------
self.s = tf.placeholder(tf.float32, [None, self.s_dim], name = 's')
self.q_target = tf.placeholder(tf.float32, [None, self.a_dim], name = 'q_target')
with tf.variable_scope('eval_net'):
c_names, n_unit, w_initializer, b_initializer = \
['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 200,\
tf.random_normal_initializer(0, 0.3), tf.constant_initializer(0.1)
with tf.variable_scope('layer1'):
w1 = tf.get_variable('w1', [self.s_dim, n_unit], initializer = w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_unit], initializer = b_initializer, collections = c_names)
layer1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)
with tf.variable_scope('layer2'):
w2 = tf.get_variable('w2', [200, 100], initializer = w_initializer, collections = c_names)
b2 = tf.get_variable('b2', [1, 100], initializer = b_initializer, collections = c_names)
layer2 = tf.nn.relu(tf.matmul(layer1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('w3', [100, 50], initializer = w_initializer, collections = c_names)
b3 = tf.get_variable('b3', [1, 50], initializer = b_initializer, collections = c_names)
layer3 = tf.nn.relu(tf.matmul(layer2, w3) + b3)
with tf.variable_scope('layer4'):
w4 = tf.get_variable('w4', [50, self.a_dim], initializer = w_initializer, collections = c_names)
b4 = tf.get_variable('b4', [1, self.a_dim], initializer = b_initializer, collections = c_names)
self.q_eval = tf.matmul(layer3, w4) + b4
with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval)) * self.ISWeights
with tf.variable_scope('train_op'):
self.train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)
#-----------------build target network --------------------
self.s_ = tf.placeholder(tf.float32, [None, self.s_dim], name = 's_')
with tf.variable_scope('target_net'):
c_names, n_unit, w_initializer, b_initializer = \
['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 200,\
tf.random_normal_initializer(0, 0.3), tf.constant_initializer(0.1)
with tf.variable_scope('layer1'):
w1 = tf.get_variable('w1', [self.s_dim, n_unit], initializer = w_initializer, collections = c_names)
b1 = tf.get_variable('b1', [1, n_unit], initializer = b_initializer, collections = c_names)
layer1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)
with tf.variable_scope('layer2'):
w2 = tf.get_variable('w2', [200, 100], initializer = w_initializer, collections = c_names)
b2 = tf.get_variable('b2', [1, 100], initializer = b_initializer, collections = c_names)
layer2 = tf.nn.relu(tf.matmul(layer1, w2) + b2)
with tf.variable_scope('layer3'):
w3 = tf.get_variable('w3', [100, 50], initializer = w_initializer, collections = c_names)
b3 = tf.get_variable('b3', [1, 50], initializer = b_initializer, collections = c_names)
layer3 = tf.nn.relu(tf.matmul(layer2, w3) + b3)
with tf.variable_scope('layer4'):
w4 = tf.get_variable('w4', [50, self.a_dim], initializer = w_initializer, collections = c_names)
b4 = tf.get_variable('b4', [1, self.a_dim], initializer = b_initializer, collections = c_names)
self.q_next = tf.matmul(layer3, w4) + b4
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver(max_to_keep = MAX_EPISODES)
def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0
transition = np.hstack((s, a, r, s_))
# index = self.memory_counter % self.memory_size
# self.memory[index, :] = transition
self.memory.store(transition)
self.memory_counter += 1
def choose_action(self, observation):
observation = observation[np.newaxis, :]
if np.random.uniform() < self.epsilon:
action_value = self.sess.run(self.q_eval, feed_dict = {self.s: observation})
action = np.argmax(action_value)
else:
action = np.random.randint(0, self.a_dim)
return action
def learn(self):
if self.learn_step_counter % self.replace_target_iter == 0:
self.sess.run(self.replace_target_op)
# print('\ntarget_params_replaced\n')
# if self.memory_counter > self.memory_size:
# sample_index = np.random.choice(self.memory_size, size = self.batch_size)
# else:
# sample_index = np.random.choice(self.memory_counter, size = self.batch_size)
# batch_memory = self.memory[sample_index, :]
tree_index, batch_memory, ISWeights = self.memory.sample(batch_size)
q_eval, q_next = self.sess.run([self.q_eval, self.q_next], feed_dict = {self.s: batch_memory[:, :self.s_dim], self.s_: batch_memory[:, -self.s_dim:]})
q_target = q_eval.copy()
batch_index = np.arange(self.batch_size, dtype = np.int32)
eval_act_index = batch_memory[:, self.s_dim].astype(int)
reward = batch_memory[:, self.s_dim + 1]
q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis = 1)
abs_td_error = np.abs(q_target[batch_index, eval_act_index] - q_eval[batch_index, eval_act_index]) * np.array(ISWeights).flatten()
self.memory.batch_update(tree_index, abs_td_error)
_, self.cost = self.sess.run([self.train_op, self.loss], feed_dict = {self.s: batch_memory[:, :self.s_dim], self.q_target: q_target, self.ISWeights: ISWeights})
self.cost_history.append(self.cost)
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
exploration = self.epsilon
self.learn_step_counter += 1
return exploration
# def plot_cost(self):
# import matplotlib.pyplot as plt
# plt.plot(np.arange(len(self.cost_history)), self.cost_history)
# plt.xlabel('training step')
# plt.ylabel('cost')
# plt.show()
def savemodel(self):
self.saver.save(self.sess, 'Checkpoints/DQN/save_net.ckpt', global_step = step_episode)
s_dim = 3
a_dim = 14
DQN = DeepQNetwork(a_dim, s_dim)
data_path = 'Data_Standard Driving Cycles/Standard_NEDC.mat'
data = scio.loadmat(data_path)
car_spd_one = data['speed_vector']
total_milage = np.sum(car_spd_one) / 1000
exploration = 1
total_step = 0
step_episode = 0
mean_reward_all = 0
cost_Engine_list = []
cost_all_list = []
cost_Engine_100Km_list = []
mean_reward_list = []
list_even = []
list_odd = []
mean_discrepancy_list = []
SOC_final_list = []
Prius = Prius_model()
for i in range(MAX_EPISODES):
SOC = 0.65
SOC_origin = SOC
ep_reward = 0
ep_reward_all = 0
a = 0
step_episode += 1
SOC_data = []
P_req_list = []
Eng_spd_list = []
Eng_trq_list = []
Eng_pwr_list = []
Eng_pwr_opt_list = []
Gen_spd_list = []
Gen_trq_list = []
Gen_pwr_list = []
Mot_spd_list = []
Mot_trq_list = []
Mot_pwr_list = []
Batt_pwr_list = []
inf_batt_list = []
inf_batt_one_list = []
Reward_list = []
Reward_list_all = []
T_list = []
Mot_eta_list = []
Gen_eta_list = []
car_spd = car_spd_one[:, 0]
car_a = car_spd_one[:, 0] - 0
s = np.zeros(s_dim)
s[0] = car_spd / 33.4
s[1] = (car_a - (-1.5)) / (1.5- (-1.5))
s[2] = SOC
for j in range(car_spd_one.shape[1] - 1):
action = DQN.choose_action(s)
# According to Wu, Jingda, et al. "Continuous reinforcement learning of energy management with deep Q network for a power split hybrid electric bus." Applied energy 222 (2018): 799-811.
# The current action of DQN is defined by variation of preivous time step action.
if action == 0:
a += 0
if action == 1:
a += (1 / 56)
if action == 2:
a += (-1 / 56)
if action == 3:
a += (2 / 56)
if action == 4:
a += (-2 / 56)
if action == 5:
a += (4 / 56)
if action == 6:
a += (-4 / 56)
if action == 7:
a += (6 / 56)
if action == 8:
a += (-6 / 56)
if action == 9:
a += (8 / 56)
if action == 10:
a += (-8 / 56)
if action == 11:
a += (10 / 56)
if action == 12:
a += (-10 / 56)
if action == 13:
a = 0
Eng_pwr_opt = a * 56000
out, cost, I = Prius.run(car_spd, car_a, Eng_pwr_opt, SOC)
P_req_list.append(float(out['P_req']))
Eng_spd_list.append(float(out['Eng_spd']))
Eng_trq_list.append(float(out['Eng_trq']))
Eng_pwr_list.append(float(out['Eng_pwr']))
Eng_pwr_opt_list.append(float(out['Eng_pwr_opt']))
Mot_spd_list.append(float(out['Mot_spd']))
Mot_trq_list.append(float(out['Mot_trq']))
Mot_pwr_list.append(float(out['Mot_pwr']))
Gen_spd_list.append(float(out['Gen_spd']))
Gen_trq_list.append(float(out['Gen_trq']))
Gen_pwr_list.append(float(out['Gen_pwr']))
Batt_pwr_list.append(float(out['Batt_pwr']))
inf_batt_list.append(int(out['inf_batt']))
inf_batt_one_list.append(int(out['inf_batt_one']))
Mot_eta_list.append(float(out['Mot_eta']))
Gen_eta_list.append(float(out['Gen_eta']))
T_list.append(float(out['T']))
SOC_new = float(out['SOC'])
SOC_data.append(SOC_new)
cost = float(cost)
r = - cost
ep_reward += r
Reward_list.append(r)
if SOC_new < 0.6 or SOC_new > 0.85:
r = - ((350 * ((0.6 - SOC_new) ** 2)) + cost)
car_spd = car_spd_one[:, j + 1]
car_a = car_spd_one[:, j + 1] - car_spd_one[:, j]
s_ = np.zeros(s_dim)
s_[0] = car_spd / 33.4
s_[1] = (car_a - (-1.5)) / (1.5- (-1.5))
s_[2] = SOC_new
DQN.store_transition(s, action, r, s_)
if total_step > 10000 and (total_step % 5 == 0):
exploration = DQN.learn()
s = s_
ep_reward_all += r
Reward_list_all.append(r)
total_step += 1
SOC = SOC_new
cost_Engine = - (ep_reward / 0.72 / 1000)
cost_all = - (ep_reward_all / 0.72 / 1000)
if j == (car_spd_one.shape[1] - 2):
SOC_final_list.append(SOC)
mean_reward = - ep_reward_all / car_spd_one.shape[1]
mean_reward_list.append(mean_reward)
cost_Engine += (SOC < SOC_origin) * (SOC_origin - SOC) * (201.6 * 6.5) * 3600 /(42600000) / 0.72
cost_Engine_list.append(cost_Engine)
cost_Engine_100Km_list.append(cost_Engine * (100 / total_milage))
cost_all += (SOC < SOC_origin) * (SOC_origin - SOC) * (201.6 * 6.5) * 3600 /(42600000) / 0.72
cost_all_list.append(cost_all)
print('Episode:', i, ' cost_Engine: %.3f' % cost_Engine, ' Fuel_100Km: %.3f' % (cost_Engine * (100 / total_milage)), ' SOC-final: %.3f' % SOC_new, 'Explore: %.3f' % exploration)
mean_reward_all += mean_reward
if (step_episode % 10) == 0 and step_episode >= 10:
if (step_episode / 10) % 2 == 0:
list_even.append(mean_reward_all)
else:
list_odd.append(mean_reward_all)
mean_reward_all = 0
DQN.savemodel()
mean_discrepancy_list = list(map(lambda x, y: y - x, list_even, list_odd))
x = np.arange(0, len(SOC_data), 1)
y = SOC_data
plt.plot(x, y)
plt.xlabel('time')
plt.ylabel('SOC')