forked from KdaiP/StableTTS
-
Notifications
You must be signed in to change notification settings - Fork 1
/
config.py
50 lines (45 loc) · 1.23 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from dataclasses import dataclass
@dataclass
class MelConfig:
sample_rate: int = 44100
n_fft: int = 2048
win_length: int = 2048
hop_length: int = 512
f_min: float = 0.0
f_max: float = None
pad: int = 0
n_mels: int = 128
center: bool = False
pad_mode: str = "reflect"
mel_scale: str = "slaney"
def __post_init__(self):
if self.pad == 0:
self.pad = (self.n_fft - self.hop_length) // 2
@dataclass
class ModelConfig:
hidden_channels: int = 256
filter_channels: int = 1024
n_heads: int = 4
n_enc_layers: int = 3
n_dec_layers: int = 6
kernel_size: int = 3
p_dropout: int = 0.1
gin_channels: int = 256
@dataclass
class TrainConfig:
train_dataset_path: str = 'filelists/filelist.json'
test_dataset_path: str = 'filelists/filelist.json' # not used
batch_size: int = 32
learning_rate: float = 1e-4
num_epochs: int = 10000
model_save_path: str = './checkpoints'
log_dir: str = './runs'
log_interval: int = 16
save_interval: int = 1
warmup_steps: int = 200
@dataclass
class VocosConfig:
input_channels: int = 128
dim: int = 512
intermediate_dim: int = 1536
num_layers: int = 8