-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
288 lines (256 loc) · 10.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import json
from pathlib import Path
from typing import Callable, Optional
import torch
from megatron.core import parallel_state
from nemo.collections.common.tokenizers.tokenizer_spec import TokenizerSpec
from nemo.collections.nlp.data.language_modeling.megatron.data_samplers import (
MegatronPretrainingRandomSampler,
MegatronPretrainingSampler,
)
from nemo.collections.nlp.data.language_modeling.megatron.megatron_batch_samplers import (
MegatronPretrainingBatchSampler,
MegatronPretrainingRandomBatchSampler,
)
from nemo.core.classes import Dataset
from nemo.utils import logging
from nemo.utils.get_rank import is_global_rank_zero
from omegaconf import DictConfig
from torch.utils.data import DataLoader
def build_dataloader(
dataset: Dataset,
consumed_samples: int,
micro_batch_size: int,
global_batch_size: int,
collate_fn: Optional[Callable] = None,
seed: Optional[int] = None,
) -> DataLoader:
common_params: dict = {
"total_samples": len(dataset),
"consumed_samples": consumed_samples,
"micro_batch_size": micro_batch_size,
"global_batch_size": global_batch_size,
"data_parallel_rank": parallel_state.get_data_parallel_rank(),
"data_parallel_size": parallel_state.get_data_parallel_world_size(),
"drop_last": True,
"pad_samples_to_global_batch_size": False,
}
if seed is not None and seed >= 0:
batch_sampler = MegatronPretrainingRandomBatchSampler(
**common_params, seed=seed
)
else:
batch_sampler = MegatronPretrainingBatchSampler(**common_params)
return DataLoader(
dataset,
batch_sampler=batch_sampler,
num_workers=0,
pin_memory=True,
collate_fn=collate_fn,
)
def custom_build_dataloader(
dataset: Dataset,
consumed_samples: int,
mbs: int,
gbs: int,
num_workers: int = 0,
drop_last: bool = True,
pad_samples_to_global_batch_size: bool = False,
load_gbs: bool = True,
seed: Optional[int] = None,
use_random_sampler: bool = True,
collate_fn=None,
):
# Common parameters for batch sampler creation
common_params = {
"total_samples": len(dataset),
"consumed_samples": consumed_samples,
"micro_batch_size": mbs,
"data_parallel_rank": parallel_state.get_data_parallel_rank(),
"data_parallel_size": parallel_state.get_data_parallel_world_size(),
"drop_last": drop_last,
"global_batch_size": gbs,
"pad_samples_to_global_batch_size": pad_samples_to_global_batch_size,
}
if use_random_sampler:
cls = (
MegatronPretrainingRandomBatchSampler
if load_gbs
else MegatronPretrainingRandomSampler
)
common_params["seed"] = seed
else:
cls = (
MegatronPretrainingBatchSampler if load_gbs else MegatronPretrainingSampler
)
batch_sampler = cls(**common_params)
return torch.utils.data.DataLoader(
dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
pin_memory=True,
collate_fn=collate_fn,
)
def load_datasets(cfg: DictConfig) -> tuple[list[dict], list[dict]]:
data_name2num_examples: dict[str, dict[str, int]] = {}
total_train_examples: list[dict] = []
total_dev_examples: list[dict] = []
for data_name, data_info in cfg.datasets.items():
dataset_path: Path = Path(f"{cfg.data_dir}/{data_name}.jsonl")
if not dataset_path.exists():
raise FileNotFoundError(f"{dataset_path} does not exist.")
if data_info.max_train_samples == 0:
if is_global_rank_zero():
logging.info(
f"max_train_samples for {data_name} is set to 0. Skip them."
)
continue
if is_global_rank_zero():
logging.info(f"processing {dataset_path}...")
loaded_examples: list[dict] = []
with dataset_path.open(encoding="utf-8") as f:
for line in f:
loaded_examples.append(json.loads(line))
if data_info.max_train_samples > len(loaded_examples) and is_global_rank_zero():
logging.warning(
f"{data_name} has only {len(loaded_examples)} examples, "
f"but max_train_samples is set to {data_info.max_train_samples}. "
"Use all examples."
)
max_train_samples: int = (
data_info.max_train_samples
if data_info.max_train_samples != -1
else len(loaded_examples)
)
max_dev_samples: int = 0
if data_info.split_dev:
max_dev_samples = min(
cfg.max_dev_samples,
int(len(loaded_examples) * cfg.max_dev_ratio),
)
train_examples: list[dict] = (
loaded_examples[max_dev_samples : max_dev_samples + max_train_samples]
* data_info.upsampling_factor
)
dev_examples: list[dict] = (
loaded_examples[:max_dev_samples] * data_info.upsampling_factor
)
total_train_examples.extend(train_examples)
total_dev_examples.extend(dev_examples)
data_name2num_examples[data_name] = {
"train": len(train_examples),
"dev": len(dev_examples),
"original": len(loaded_examples),
"upsampling_factor": data_info.upsampling_factor,
}
if is_global_rank_zero():
num_total_original_examples: int = 0
logging.info("------------------------------")
logging.info("Dataset summary (original -> train/dev)")
for data_name, num_examples in data_name2num_examples.items():
num_total_original_examples += num_examples["original"]
logging.info(
f"{data_name}: {num_examples['original']} -> {num_examples['train']}/{num_examples['dev']} (upsampling factor: {num_examples['upsampling_factor']})"
)
logging.info(
f"Total: {num_total_original_examples} -> {len(total_train_examples)}/{len(total_dev_examples)}"
)
logging.info("------------------------------")
return total_train_examples, total_dev_examples
class LLMJPSFTDataset(Dataset):
def __init__(
self,
loaded_examples: list[dict],
tokenizer: TokenizerSpec,
use_loss_mask: bool,
max_seq_length: int = 4096,
):
self.tokenizer = tokenizer
self.use_loss_mask: bool = use_loss_mask
self.max_seq_length: int = max_seq_length
self.examples: list[dict[str, list[int]]] = self._process_examples(
loaded_examples
)
def __len__(self) -> int:
return len(self.examples)
def __getitem__(self, idx: int) -> dict[str, list[int]]:
return self.examples[idx]
def _process_examples(
self, loaded_examples: list[dict]
) -> list[dict[str, list[int]]]:
all_input_ids: list[int] = []
all_loss_mask: list[int] = []
for example_idx, loaded_example in enumerate(loaded_examples):
conversation: list[dict[str, str]] = loaded_example["messages"]
assert len(conversation) >= 3
assert conversation[0]["role"] == "system"
input_ids: list[int] = [self.tokenizer.bos_id] + self.tokenizer.text_to_ids(
conversation[0]["content"]
)
loss_mask: list[int] = (
[0] * len(input_ids) if self.use_loss_mask else [1] * len(input_ids)
)
for turn_idx in range(1, len(conversation[1:]) // 2 + 1):
user_message: dict[str, str] = conversation[2 * turn_idx - 1]
assistant_message: dict[str, str] = conversation[2 * turn_idx]
assert user_message["role"] == "user"
assert assistant_message["role"] == "assistant"
if self.use_loss_mask:
prompt_ids: list[int] = self.tokenizer.text_to_ids(
f"\n\n### 指示:\n{user_message['content']}\n\n### 応答:\n"
)[1:]
response_ids: list[int] = self.tokenizer.text_to_ids(
f"\n{assistant_message['content']}"
)[2:] + [self.tokenizer.eos_id]
input_ids.extend(prompt_ids + response_ids)
loss_mask.extend([0] * len(prompt_ids) + [1] * len(response_ids))
else:
prompt_response_ids: list[int] = self.tokenizer.text_to_ids(
f"\n\n### 指示:\n{user_message['content']}\n\n### 応答:\n{assistant_message['content']}"
)[1:] + [self.tokenizer.eos_id]
input_ids.extend(prompt_response_ids)
loss_mask.extend([1] * len(prompt_response_ids))
if is_global_rank_zero() and example_idx < 2:
logging.info(f"{example_idx = }")
logging.info(f"{input_ids = }")
logging.info(f"{loss_mask = }")
all_input_ids.extend(input_ids)
all_loss_mask.extend(loss_mask)
examples: list[dict[str, list[int]]] = []
for i in range(0, len(all_input_ids), self.max_seq_length + 1):
chunked_input_ids: list[int] = all_input_ids[
i : i + self.max_seq_length + 1
]
chunked_loss_mask: list[int] = all_loss_mask[
i : i + self.max_seq_length + 1
]
if len(chunked_input_ids) == self.max_seq_length + 1:
if set(chunked_loss_mask) == {0}: # Skip if all loss_mask is 0
continue
examples.append(
{"input_ids": chunked_input_ids, "loss_mask": chunked_loss_mask}
)
return examples
@torch.no_grad()
def _create_attention_mask(self, seq_length: int) -> torch.Tensor:
attention_mask = torch.tril(torch.ones((seq_length, seq_length))).unsqueeze(
0
) # (1, seq_length, seq_length)
attention_mask = attention_mask < 0.5
return attention_mask
def collate_fn(self, batch: list[dict[str, list[int]]]) -> dict[str, torch.Tensor]:
input_ids: list[list[int]] = [item["input_ids"][:-1] for item in batch]
labels: list[list[int]] = [item["input_ids"][1:] for item in batch]
loss_mask: list[list[int]] = [item["loss_mask"][1:] for item in batch]
pro_batch = {
"tokens": torch.LongTensor(input_ids),
"position_ids": torch.LongTensor(
[list(range(self.max_seq_length)) for _ in batch]
),
"attention_mask": torch.stack(
[self._create_attention_mask(self.max_seq_length) for _ in batch]
),
"labels": torch.LongTensor(labels),
"loss_mask": torch.LongTensor(loss_mask),
}
return pro_batch