-
Notifications
You must be signed in to change notification settings - Fork 26
/
image_to_image.py
218 lines (202 loc) · 6.86 KB
/
image_to_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import logging
import os
import random
from typing import Annotated, Dict, Tuple, Union
import torch
from fastapi import APIRouter, Depends, File, Form, UploadFile, status
from fastapi.responses import JSONResponse
from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer
from PIL import Image, ImageFile
from app.dependencies import get_pipeline
from app.pipelines.base import Pipeline
from app.routes.utils import (
HTTPError,
ImageResponse,
handle_pipeline_exception,
http_error,
image_to_data_url,
)
ImageFile.LOAD_TRUNCATED_IMAGES = True
router = APIRouter()
logger = logging.getLogger(__name__)
# Pipeline specific error handling configuration.
PIPELINE_ERROR_CONFIG: Dict[str, Tuple[Union[str, None], int]] = {
# Specific error types.
"OutOfMemoryError": (
"Out of memory error. Try reducing input image resolution.",
status.HTTP_500_INTERNAL_SERVER_ERROR,
)
}
RESPONSES = {
status.HTTP_200_OK: {
"content": {
"application/json": {
"schema": {
"x-speakeasy-name-override": "data",
}
}
},
},
status.HTTP_400_BAD_REQUEST: {"model": HTTPError},
status.HTTP_401_UNAUTHORIZED: {"model": HTTPError},
status.HTTP_500_INTERNAL_SERVER_ERROR: {"model": HTTPError},
}
# TODO: Make model_id and other None properties optional once Go codegen tool supports
# OAPI 3.1 https://github.com/deepmap/oapi-codegen/issues/373
@router.post(
"/image-to-image",
response_model=ImageResponse,
responses=RESPONSES,
description="Apply image transformations to a provided image.",
operation_id="genImageToImage",
summary="Image To Image",
tags=["generate"],
openapi_extra={"x-speakeasy-name-override": "imageToImage"},
)
@router.post(
"/image-to-image/",
response_model=ImageResponse,
responses=RESPONSES,
include_in_schema=False,
)
async def image_to_image(
prompt: Annotated[
str,
Form(description="Text prompt(s) to guide image generation."),
],
image: Annotated[
UploadFile,
File(description="Uploaded image to modify with the pipeline."),
],
model_id: Annotated[
str,
Form(description="Hugging Face model ID used for image generation."),
] = "",
loras: Annotated[
str,
Form(
description=(
"A LoRA (Low-Rank Adaptation) model and its corresponding weight for "
'image generation. Example: { "latent-consistency/lcm-lora-sdxl": '
'1.0, "nerijs/pixel-art-xl": 1.2}.'
)
),
] = "",
strength: Annotated[
float,
Form(
description=(
"Degree of transformation applied to the reference image (0 to 1)."
)
),
] = 0.8,
guidance_scale: Annotated[
float,
Form(
description=(
"Encourages model to generate images closely linked to the text prompt "
"(higher values may reduce image quality)."
)
),
] = 7.5,
image_guidance_scale: Annotated[
float,
Form(
description=(
"Degree to which the generated image is pushed towards the initial "
"image."
)
),
] = 1.5,
negative_prompt: Annotated[
str,
Form(
description=(
"Text prompt(s) to guide what to exclude from image generation. "
"Ignored if guidance_scale < 1."
)
),
] = "",
safety_check: Annotated[
bool,
Form(
description=(
"Perform a safety check to estimate if generated images could be "
"offensive or harmful."
)
),
] = True,
seed: Annotated[int, Form(description="Seed for random number generation.")] = None,
num_inference_steps: Annotated[
int,
Form(
description=(
"Number of denoising steps. More steps usually lead to higher quality "
"images but slower inference. Modulated by strength."
)
),
] = 100, # NOTE: Hardcoded due to varying pipeline values.
num_images_per_prompt: Annotated[
int,
Form(description="Number of images to generate per prompt."),
] = 1,
pipeline: Pipeline = Depends(get_pipeline),
token: HTTPAuthorizationCredentials = Depends(HTTPBearer(auto_error=False)),
):
auth_token = os.environ.get("AUTH_TOKEN")
if auth_token:
if not token or token.credentials != auth_token:
return JSONResponse(
status_code=status.HTTP_401_UNAUTHORIZED,
headers={"WWW-Authenticate": "Bearer"},
content=http_error("Invalid bearer token."),
)
if model_id != "" and model_id != pipeline.model_id:
return JSONResponse(
status_code=status.HTTP_400_BAD_REQUEST,
content=http_error(
f"pipeline configured with {pipeline.model_id} but called with "
f"{model_id}."
),
)
seed = seed if seed is not None else random.randint(0, 2**32 - 1)
seeds = [seed + i for i in range(num_images_per_prompt)]
image = Image.open(image.file).convert("RGB")
# TODO: Process one image at a time to avoid CUDA OEM errors. Can be removed again
# once LIV-243 and LIV-379 are resolved.
images = []
has_nsfw_concept = []
for seed in seeds:
try:
imgs, nsfw_checks = pipeline(
prompt=prompt,
image=image,
strength=strength,
loras=loras,
guidance_scale=guidance_scale,
image_guidance_scale=image_guidance_scale,
negative_prompt=negative_prompt,
safety_check=safety_check,
seed=seed,
num_images_per_prompt=1,
num_inference_steps=num_inference_steps,
)
except Exception as e:
if isinstance(e, torch.cuda.OutOfMemoryError):
# TODO: Investigate why not all VRAM memory is cleared.
torch.cuda.empty_cache()
logger.error(f"ImageToImagePipeline pipeline error: {e}")
return handle_pipeline_exception(
e,
default_error_message="Image-to-image pipeline error.",
custom_error_config=PIPELINE_ERROR_CONFIG,
)
images.extend(imgs)
has_nsfw_concept.extend(nsfw_checks)
# TODO: Return None once Go codegen tool supports optional properties
# OAPI 3.1 https://github.com/deepmap/oapi-codegen/issues/373
output_images = [
{"url": image_to_data_url(img), "seed": sd, "nsfw": nsfw or False}
for img, sd, nsfw in zip(images, seeds, has_nsfw_concept)
]
return {"images": output_images}