diff --git a/README.md b/README.md index 8948ecc..9a4b06a 100644 --- a/README.md +++ b/README.md @@ -116,7 +116,7 @@ points. We can construct a generator polynomial $P(x)$ with $n$ fixed points at $g^i$ where $i < n$ like so: ``` math -P(x) = \prod_{i=0}^n \left(x - X_i\right) +P(x) = \prod_{i=0}^n \left(x - g^i\right) ``` We could choose any arbitrary set of fixed points, but usually we choose @@ -964,14 +964,14 @@ particular interest to us is the product rule: \left(\prod_{i=0}^n f_i(x)\right)' = \sum_{i=0}^n \left(f_i'(x) \prod_{j \ne i} f_j(x)\right) ``` -Applying this to our error-locator polynomial $\Lambda(x): +Applying this to our error-locator polynomial $\Lambda(x)$: ``` math \Lambda(x) = 1 + \sum_{i=1}^e \Lambda_i x^i ``` ``` math -\Lambda'(x) = \sum_{i=1}^e i \Lambda_i x^{i-1} +\Lambda'(x) = \sum_{i=1}^e i \cdot \Lambda_i x^{i-1} ``` Recall the other definition of our error-locator polynomial $\Lambda(x)$: