-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathLearnExpFam.py
344 lines (291 loc) · 12.6 KB
/
LearnExpFam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#! /home/mhughes/mypy/epd64/bin/python
#$ -S /home/mhughes/mypy/epd64/bin/python
# ------ set working directory
#$ -cwd
# ------ attach job number
#$ -j n
# ------ send to particular queue
#$ -o ../logs/$JOB_ID.$TASK_ID.out
#$ -e ../logs/$JOB_ID.$TASK_ID.err
'''
User-facing executable script for learning Exp Family Models
with a variety of possible inference algorithms, such as
** Expectation Maximization (EM)
** Variational Bayesian Inference (VB)
Author: Mike Hughes ([email protected])
Quickstart
-------
To run EM for a 3-component GMM on easy toy data, do
>> python LearnExpFam.py EasyToyGMMData MixModel Gaussian EM --K=3
To run Variation Bayes on the same data using more components, do
>> python LearnExpFam.py EasyToyGMMData MixModel Gaussian VB --K=10
To run Variational Bayes on some simple binary toy data,
>> python LearnExpFam.py EasyToyBernData MixModel Bernoulli VB --K=5
Usage
-------
python LearnGMM.py <data_module_name> <aModel name> <eModel name> <alg name> [options]
<data_module> is a python script that lives in GMM/data/
with either/both of the following functions
* get_data() for batch algorithms
* minibatch_generator() for online algorithms
for example, see EasyToyGMMData.py
<alg_name> is one of:
EM : expectation maximization
VB : variational bayes
[options] includes these and more
--jobname : string name of the current experiment
--nTask : # separate initializations to try
--nIter : # iterations per task
--K : # mixture components to use
--saveEvery : # iters between saving global model params to disk
--printEvery: # iters between printing progress update to stdout
'''
from distutils.dir_util import mkpath #mk_dir functionality
import argparse
import os.path
import sys
import numpy as np
#############################################################
# Code to Make Grid IO Possible
#############################################################
class MyLogFile(object):
def __init__(self, fileobj):
# reopen stdout file descriptor with write mode
# and 0 as the buffer size (unbuffered)
self.file = os.fdopen( fileobj.fileno(), 'w', 0)
def flush( self ):
self.file.flush()
def __getattr__(self, attr):
return getattr( self.file, attr )
def write( self, data):
self.file.write( data )
self.file.flush()
os.fsync( self.file.fileno() )
def fileno( self ):
return self.file.fileno()
def close( self ):
self.file.close()
def clear_folder( savefolder, prefix=None ):
#print 'Clearing %s' % (savefolder)
for the_file in os.listdir( savefolder ):
if prefix is not None:
if not the_file.startswith(prefix):
continue
file_path = os.path.join( savefolder, the_file)
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
jobID = 1
taskID = 1
if not sys.stdout.isatty():
sys.stdout = MyLogFile( sys.stdout )
sys.stderr = MyLogFile( sys.stderr )
os.chdir('..')
sys.path[0] = os.getcwd()
print 'This is LearnExpFam.py'
print 'Python version %d.%d.%d' % sys.version_info[ :3]
print 'Numpy version %s' % (np.__version__)
print 'Cur Dir:', os.getcwd()
print 'Local search path:', sys.path[0]
try:
jobID = int( os.getenv( 'JOB_ID' ) )
taskID = int( os.getenv( 'SGE_TASK_ID' ) )
LOGFILEPREFIX = os.path.join( os.getcwd(), 'logs', str(jobID)+'.'+str(taskID) )
except TypeError:
pass
print 'JobID %d' % (jobID )
print 'TaskID %d' % (taskID )
print '---------------------------------------------'
#############################################################
# Code to Parse Arguments
#############################################################
import expfam as ef
AllocModelConstructor = {'MixModel': ef.mix.MixModel, \
'DPMixModel': ef.mix.DPMixModel, \
'HMM': ef.hmm.HMM, \
'AdmixModel': ef.admix.AdmixModel, \
'Admix': ef.admix.AdmixModel, \
'HDPAdmixModel': ef.admix.HDPAdmixModel,\
'HDP': ef.admix.HDPAdmixModel}
PriorConstr = {'Gaussian': ef.obsModel.GaussWishDistrIndep, \
'Gauss': ef.obsModel.GaussWishDistrIndep, \
'Normal': ef.obsModel.GaussWishDistrIndep, \
'Multinomial': ef.obsModel.DirichletDistr, \
'Mult': ef.obsModel.DirichletDistr, \
'Discrete': ef.obsModel.DirichletDistr, \
'Bern': ef.obsModel.BetaDistr, \
'Bernoulli': ef.obsModel.BetaDistr}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument( 'datagenModule', type=str )
parser.add_argument( 'modelName', type=str )
parser.add_argument( 'obsName', type=str )
parser.add_argument( 'algName', type=str )
parser.add_argument( '--K', type=int, default=3 )
parser.add_argument( '--alpha0', type=float, default=1.0 )
parser.add_argument( '--min_covar', type=float, default=1e-9 )
parser.add_argument( '--doprior', action='store_true', default=False )
lgroup = parser.add_mutually_exclusive_group()
lgroup.add_argument('--dobatch', action='store_true',default=True)
lgroup.add_argument('--doonline', action='store_true')
parser.add_argument('--dotest', action='store_true',default=False)
parser.add_argument('--doprintfinal', action='store_true',default=False)
# Batch learning args
parser.add_argument( '--nIter', type=int, default=100 )
# Online learning args
parser.add_argument( '--batch_size', type=int, default=100 )
parser.add_argument( '--nBatch', type=int, default=50 )
parser.add_argument( '--nRep', type=int, default=1 )
parser.add_argument( '--rhoexp', type=float, default=0.5 )
parser.add_argument( '--rhodelay', type=float, default=1 )
# Generic args
parser.add_argument( '--jobname', type=str, default='defaultjob' )
parser.add_argument( '--taskid', type=int, default=taskID )
parser.add_argument( '--nTask', type=int, default=1 )
parser.add_argument( '--initname', type=str, default='random' )
parser.add_argument( '--seed', type=int, default=8675309 )
parser.add_argument( '--evidenceEvery', type=int, default=1 )
parser.add_argument( '--printEvery', type=int, default=5 )
parser.add_argument( '--saveEvery', type=int, default=10 )
return parser.parse_args()
def get_data_summary( Data, doAdmix, doHMM):
try:
nObs = Data['X'].shape[0]
nDim = Data['X'].shape[1]
except KeyError:
nObs = Data['nObs']
nDim = Data['nVocab']
if doAdmix:
summaryStr = " %d observations. Each obs has dim %d.\n %d groups. Avg. %.0f obs/group" \
% (nObs, nDim, Data['nGroup'], nObs/Data['nGroup'])
elif doHMM:
summaryStr = " %d sequences. Avg. Length = %d. Each obs has dim %d" \
% (Data['nSeq'], np.mean( Data['Tstop']-Data['Tstart'] ), nDim)
else:
summaryStr = " %d observations. Each obs has dim %d. " \
% (nObs, nDim)
return summaryStr
def load_data( datagenmod, dataParams, doOnline, doAdmix, doHMM):
''' Load training data from user-provided data "generation" module
which we assume implements the appropriate generating function
e.g. "get_data" or "get_sequence_data"
'''
if doOnline:
if doAdmix:
Data = datagenmod.group_minibatch_generator( **dataParams )
Dchunk = Data.next()
Data = datagenmod.group_minibatch_generator( **dataParams )
elif doHMM:
Data = datagenmod.sequence_minibatch_generator( **dataParams )
Dchunk = Data.next()
Data = datagenmod.sequence_minibatch_generator( **dataParams )
else:
Data = datagenmod.minibatch_generator( **dataParams )
Dchunk = Data.next()
Data = datagenmod.minibatch_generator( **dataParams )
summaryStr = " Streaming data! %d batches, %d repetitions" % ( dataParams['nBatch'], dataParams['nRep'])
summaryStr += get_data_summary( Dchunk, doAdmix, doHMM )
else:
if doAdmix:
Data = datagenmod.get_data_by_groups( **dataParams )
elif doHMM:
Data = datagenmod.get_sequence_data( **dataParams )
else:
Data = datagenmod.get_data( **dataParams )
summaryStr = get_data_summary( Data, doAdmix, doHMM )
return Data, summaryStr
def load_test_data( datagenmod, dataParams, doAdmix, doHMM ):
''' Load held-out data for asseessing model generalization
Uses same procedure for normal training data,
but relies on a different seed to achieve different data
'''
testParams = dataParams
testParams['seed'] += 1
if doAdmix:
Dtest = datagenmod.get_data_by_groups( **testParams )
elif doHMM:
Dtest = datagenmod.get_sequence_data( **testParams )
else:
Dtest = datagenmod.get_data( **testParams )
return Dtest
def main(args):
####################################################### Data Module parsing
dataParams = dict()
for argName in ['nBatch', 'nRep', 'batch_size', 'seed']:
dataParams[argName] = args.__getattribute__( argName )
# Dynamically load module provided by user as data-generator
datagenmod = __import__( 'data.' + args.datagenModule, fromlist=['data'])
####################################################### Algorithm settings
algParams = dict()
for argName in ['initname', 'nIter', 'rhoexp', 'rhodelay', \
'nIter', 'printEvery', 'saveEvery','evidenceEvery']:
algParams[ argName ] = args.__getattribute__( argName )
if args.doonline:
algName = 'o'+args.algName
else:
algName = args.algName
####################################################### ExpFam Model Params
modelParams = dict()
for argName in ['K', 'alpha0', 'min_covar']:
modelParams[ argName ] = args.__getattribute__( argName )
obsPriorParams = dict()
for argName in []:
obsPriorParams[ argName ] = args.__getattribute__( argName )
if args.doprior or args.algName.count('VB')>0:
obsPrior = PriorConstr[ args.obsName ]( **obsPriorParams )
else:
obsPrior = None
am = AllocModelConstructor[ args.modelName ]( qType=algName, **modelParams )
model = ef.ExpFamModel( am, args.obsName, obsPrior )
doAdmix = (args.modelName.count('Admix') + args.modelName.count('HDP') )> 0
doHMM = args.modelName.count('HMM') > 0
if 'get_short_name' in dir( datagenmod ):
datashortname = datagenmod.get_short_name()
else:
datashortname = args.datagenModule[:7]
jobpath = os.path.join( datashortname, args.modelName, algName, args.jobname)
Data, dataSummaryStr = load_data( datagenmod, dataParams, args.doonline, doAdmix, doHMM )
if args.dotest:
Dtest = load_test_data( datagenmod, dataParams, doAdmix, doHMM)
# Print Message!
if 'print_data_info' in dir( datagenmod ):
datagenmod.print_data_info( args.modelName )
print 'Data Specs:\n', dataSummaryStr
model.print_model_info()
print 'Learn Alg: %s' % (algName)
####################################################### Spawn individual tasks
for task in xrange( args.taskid, args.taskid+args.nTask ):
seed = hash( args.jobname+str(task) ) % np.iinfo(int).max
algParams['seed'] = seed
basepath = os.path.join( 'results', jobpath, str(task) )
mkpath( basepath )
clear_folder( basepath )
algParams['savefilename'] = os.path.join( basepath, '' )
print 'Trial %2d/%d | alg. seed: %d | data seed: %d' \
% (task, args.nTask, algParams['seed'], dataParams['seed'])
print ' savefile: %s' % (algParams['savefilename'])
if jobID > 1:
logpath = os.path.join( 'logs', jobpath )
mkpath( logpath )
clear_folder( logpath, prefix=str(task) )
os.symlink( LOGFILEPREFIX+'.out', '%s/%d.out' % (logpath, task) )
os.symlink( LOGFILEPREFIX+'.err', '%s/%d.err' % (logpath, task) )
print ' logfile: %s' % (logpath)
########################################################## Run Learning Alg
if args.doonline:
learnAlg = ef.learn.OnlineVBLearnAlg( model, **algParams )
learnAlg.fit( Data, seed )
elif args.dobatch:
learnAlg = ef.learn.VBLearnAlg( model, **algParams )
learnAlg.fit( Data, seed )
'''
if args.dotest:
learnAlg.fit( Data, seed, Dtest=Dtest)
else:
learnAlg.fit( Data, seed )
'''
########################################################## Wrap Up
if args.doprintfinal:
model.print_global_params()
if __name__ == '__main__':
args = parse_args()
main(args)