-
Notifications
You must be signed in to change notification settings - Fork 0
/
124. Binary Tree Maximum Path Sum.cpp
61 lines (54 loc) · 1.69 KB
/
124. Binary Tree Maximum Path Sum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// ***
//
// Given a non-empty binary tree, find the maximum path sum.
// For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along
// the parent-child connections. The path must contain at least one node and does not need to go through the root.
//
// Example 1:
// Input: [1,2,3]
//
// 1
// / \
// 2 3
//
// Output: 6
//
// Example 2:
// Input: [-10,9,20,null,null,15,7]
//
// -10
// / \
// 9 20
// / \
// 15 7
//
// Output: 42
//
// ***
// See also 687. Longest Univalue Path. Very similar structure.
class Solution {
public:
int maxPathSum(TreeNode* root) {
_oneSideMax(root);
return _maxSum;
}
private:
// Note that a path must contain at least one node (which can be negative), therefore the maxSum might be negative.
int _maxSum = INT_MIN;
// Returns max sum from current root,
// This will return either leftSubtreeMaxSum + root->val, or rightSubtreeMaxSum + root->val.
int _oneSideMax(TreeNode* root) {
if (not root) {
return 0;
}
// We need to take max(_oneSideMax(root->left), 0)
// because for example if leftMaxPathSum is negative, then we simply don't need the left subtree at all
// when we are calculating the path sum for leftSubtree -> root -> rightSubtree.
int leftMaxPathSum = max(0, _oneSideMax(root->left));
int rightMaxPathSum = max(0, _oneSideMax(root->right));
// Update global max sum.
_maxSum = max(_maxSum, leftMaxPathSum + rightMaxPathSum + root->val);
// Return max sum from current root.
return max(leftMaxPathSum, rightMaxPathSum) + root->val;
}
};