-
Notifications
You must be signed in to change notification settings - Fork 0
/
1162. As Far from Land as Possible.cpp
75 lines (71 loc) · 2.21 KB
/
1162. As Far from Land as Possible.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
// ***
//
// Given an n x n grid containing only values 0 and 1, where 0 represents water and 1 represents land, find a water cell
// such that its distance to the nearest land cell is maximized, and return the distance. If no land or water exists in
// the grid, return -1.
//
// The distance used in this problem is the Manhattan distance: the distance between two cells (x0, y0) and (x1, y1) is
// |x0 - x1| + |y0 - y1|.
//
//
// Example 1:
//
// Input: grid = [[1,0,1],[0,0,0],[1,0,1]]
// Output: 2
// Explanation: The cell (1, 1) is as far as possible from all the land with distance 2.
//
//
// Example 2:
//
// Input: grid = [[1,0,0],[0,0,0],[0,0,0]]
// Output: 4
// Explanation: The cell (2, 2) is as far as possible from all the land with distance 4.
//
//
// Constraints:
//
// n == grid.length
// n == grid[i].length
// 1 <= n <= 100
// grid[i][j] is 0 or 1
//
// ***
// Put *all* land cells (1) into a queue as source nodes and BFS for water cells (0),
// the last expanded one will be the farthest.
class Solution {
public:
int maxDistance(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
queue<vector<int>> q;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] == 1) {
q.push({i, j});
}
}
}
// Return -1 if there's no island or no water.
if (q.size() == 0 or q.size() == n * n) {
return -1;
}
vector<vector<int>> dirs{{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
int step = -1;
while (not q.empty()) {
int qSize = q.size();
while (qSize--) {
auto cur = q.front();
q.pop();
for (auto& dir : dirs) {
int x = cur[0] + dir[0], y = cur[1] + dir[1];
if (x < 0 || x >= n || y < 0 || y >= n || grid[x][y] != 0) {
continue;
}
grid[x][y] = INT_MAX; // mark water cell (0) as visited
q.push({x, y}); // push water cell (0) to queue for next level of BFS
}
}
++step;
}
return step;
}
};