-
Notifications
You must be signed in to change notification settings - Fork 0
/
115. Distinct Subsequences.cpp
87 lines (83 loc) · 2.54 KB
/
115. Distinct Subsequences.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
// ***
//
// Given a string S and a string T, count the number of distinct subsequences of S which equals T.
//
// A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of
// the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of
// "ABCDE" while "AEC" is not).
//
// It's guaranteed the answer fits on a 32-bit signed integer.
//
// Example 1:
//
// Input: S = "rabbbit", T = "rabbit"
// Output: 3
// Explanation:
// As shown below, there are 3 ways you can generate "rabbit" from S.
// (The caret symbol ^ means the chosen letters)
//
// rabbbit
// ^^^^ ^^
// rabbbit
// ^^ ^^^^
// rabbbit
// ^^^ ^^^
// Example 2:
//
// Input: S = "babgbag", T = "bag"
// Output: 5
// Explanation:
// As shown below, there are 5 ways you can generate "bag" from S.
// (The caret symbol ^ means the chosen letters)
//
// babgbag
// ^^ ^
// babgbag
// ^^ ^
// babgbag
// ^ ^^
// babgbag
// ^ ^^
// babgbag
// ^^^
//
// ***
//
// Ø r a b b b i t S
// Ø 1 1 1 1 1 1 1 1
// r 0 1 1 1 1 1 1 1
// a 0 0 1 1 1 1 1 1
// b 0 0 0 1 2 3 3 3
// b 0 0 0 0 1 3 3 3
// i 0 0 0 0 0 0 3 3
// t 0 0 0 0 0 0 0 3
//
// T
//
// dp[i][j]: *number of* distinct subsequence of first i letters in t can be formed by first j letters in s.
// dp[0][j] = 1 because an empty string is a subsequence of an empty string.
// dp[i][0] = 0 because a non-empty string cannot be formed by an empty string.
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<long>> dp(t.size() + 1, vector<long>(s.size() + 1));
for (int j = 0; j <= s.size(); ++j) {
dp[0][j] = 1;
}
for (int i = 1; i <= t.size(); ++i) {
for (int j = 1; j <= s.size(); ++j) {
// The number of distinct subsequence of first i letters in t formed by first j letters in s must be at
// least as many as the number of distinct subsequence of first i letters in t formed by first j - 1
// letters in s.
//
// if the i-th letter in t is the same as the j-th letter in s, then
// dp[i][j] = dp[i][j-1] + dp[i-1][j-1]. Otherwise,
// dp[i][j] = dp[i][j-1]
//
// You obtain the state transition function mostly by observation, there is nothing really obvious.
dp[i][j] = dp[i][j - 1] + (t[i - 1] == s[j - 1] ? dp[i - 1][j - 1] : 0);
}
}
return dp[t.size()][s.size()];
}
};