-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathL1U_Crout.py
38 lines (35 loc) · 922 Bytes
/
L1U_Crout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import funciones
def metodoL1U(A,b,n):
L = []
for i in range(n):
L.append( [0]*n)
U = []
for i in range(n):
U.append( [0]*n)
#pivot
a = funciones.matrizAumentada(A,b,n)
for j in range(n):
a = funciones.pivot(a, j)
A = []
b = []
for i in range(n):
A.append(a[i][0:n])
b.append(a[i][n])
#L1U
for j in range(0,n):
L[j][j] = 1.0
for i in range(j,n):
U[j][i] = A[j][i] - funciones.suma(U,L,j,i,j)
for i in range(j+1,n):
if U[j][j]==0:
return ["NULL","NULL"]
L[i][j] = (A[i][j] - funciones.suma(U,L,i,j,j))/U[j][j]
print "\n Resolucion por Algoritmo L1U-Crout "
print " -------------------------------------------------"
print "\n Matriz U Triangular Superior"
funciones.imprimeMatriz(U)
print "\n Matriz L Triangular Inferior"
funciones.imprimeMatriz(L)
y = funciones.solucionL(L,b,n) #Ly = b "obtenemos y"
x = funciones.solucionU(U,y,n) #Ux = y "obtenemos x"
return [y,x]