-
Notifications
You must be signed in to change notification settings - Fork 0
/
Numpy.py
422 lines (309 loc) · 6.63 KB
/
Numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# -*- coding: utf-8 -*-
"""Numpy.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1pZORhdFEo9ArTGKW_YVRm7jupd1DH8tU
"""
# list
print([1,2,3])
# one dimentional array
# array([1,2,3])
#list of lists
print([[1,2,3],[4,5,6]])
# two diemntional array
# array([[1,2,3],[4,5,6]])
# To install Numpy
# pip install numpy
import numpy as np
# 1_D array
a = np.array([1,2,3])
print(a)
# 2_D array
a = np.array([[1,2,3],[4,5,6]])
print(a)
# Creating an array filled with zeros
a = np.zeros(5)
print(a)
# Creating an array filled with ones
a = np.ones(5)
print(a)
# Creating an array of random values (shown as 2x3 matrix)
a = np.random.random((2,3))
print(a)
# Creating an array filled with given value (dimensions, value)
a = np.full(3,10)
print(a)
a = np.full((2,3),10)
print(a)
# Creating an empty array (fills with arbitrary, un-initialized values)
a = np.empty(2)
print(a)
a = np.empty((2,3))
print(a)
# Creating an array of evenly spaced values (start, stop, step)
# no include stop value
a = np.arange(1,10,1)
print(a)
# Creating an array of evenly spaced values (low, high, num-values)
# include stop value
a = np.linspace(1,10,10)
print(a)
# Creating an array of random integers (low, high, size)
a = np.random.randint(1,10,10)
print(a)
my_1d_array = np.arange(0,20,1)
print(my_1d_array)
print("Max" , my_1d_array.max())
print("Min", my_1d_array.min())
print("Mean", my_1d_array.mean())
print("Sum", my_1d_array.sum())
print("Std", my_1d_array.std())
a = my_1d_array + 10
print(a)
a = my_1d_array - 10
print(a)
a = my_1d_array * 10
print(a)
a = my_1d_array / 10
print(a)
a = np.square(my_1d_array)
print(a)
a = np.sqrt(my_1d_array)
print(a)
a = np.sin(my_1d_array)
print(a)
a = np.cos(my_1d_array)
print(a)
a = np.tan(my_1d_array)
print(a)
a = np.sign(my_1d_array)
print(a)
a = my_1d_array[0]
print(a)
a = my_1d_array[0:6] # not include the last one
print(a)
a = my_1d_array[-1]
print(a)
a = my_1d_array.reshape(1,my_1d_array.size)
print(a)
a = my_1d_array.reshape(my_1d_array.size,1)
print(a)
my_2d_array = np.random.randint(1,10,(2,3))
print(my_2d_array)
print("Max" , my_2d_array.max())
print("Max in column" , my_2d_array.max(axis = 0))
print("Max in row" , my_2d_array.max(axis = 1))
print("Sum of coulmn" , my_2d_array.sum(axis = 0))
print("Sum of rows" , my_2d_array.sum(axis = 1))
print("Min", my_2d_array.min())
print("Mean", my_2d_array.mean())
print("Sum", my_2d_array.sum())
print("Std", my_2d_array.std())
a = my_2d_array[0]
print(a)
a = my_2d_array[0][1]
print(a)
# Re-shape (here to 3 rows & 2 columns)
a = my_2d_array.reshape(3,2)
print(my_2d_array)
print(a)
# Re-shape (here to a 1-Dimensional array)
a = my_2d_array.flatten()
print(a)
a = my_2d_array.reshape(6)
print(a)
a = my_2d_array.ravel()
print(a)
# Array Shape (length of each dimension)
a = my_2d_array.shape
print(a)
# Number of dimensions
a = my_2d_array.ndim
print(a)
# Number of elements
a = my_2d_array.size
print(a)
a = my_2d_array.dtype
print(a)
b = np.array([1,2,3])
c = np.array([4,2,6])
print("b", b)
print("c", c)
a = np.add(b,c)
print(a)
a = np.subtract(b,c)
print(a)
a = np.multiply(b,c)
print(a)
a = np.divide(b,c)
print(a)
a = np.dot(b,c)
print(a)
a = (b == c)
print(a)
a = np.array_equal(a,b)
print(a)
# Horizontal Stack
# hstack concatenates arrays along axis 1
a = np.hstack((b,c))
print(a)
print()
a = np.concatenate((b,c))
print(a)
# Vertical Stack
# vstack concatenates arrays along axis 0
a = np.vstack((b,c))
print(a)
print()
x = np.array([[1,2],[3,4]])
y = np.array([[5,6]])
a = np.concatenate((x,y), axis = 0)
a1 = np.vstack((x,y))
print(a)
print(a1)
p = np.pi
print(p)
a = np.array([1,2,3], dtype = np.float32)
print(a)
#Return a 2-D array with ones on the diagonal and zero elsewhere
a = np.eye(3) # with 3 column
print(a)
a = np.arange(12).reshape(2,2,3)
print(a)
# Arrays can be transposed using the .T attribute
a = my_1d_array.T
a1 = my_1d_array.transpose()
print(a)
print(a1)
#Numpy also provides a set of element-wise functions that can be applied to all elements of an array, creating a new array
a = np.array([[1,2,3],[4,5,6]])
a1 = np.exp(a)
print(a1)
a2 = np.log(a)
print(a2)
# execution time
s = 0
N = 10000000
x = np.arange(N)
for i in x:
s += i
# execution time
N = 10000000
x = np.arange(N)
s = x.sum()
x = np.arange(15).reshape(3,5)
print(x)
print()
a = x[1, 0:3]
print(a)
print()
a = x[0:2, 0:2]
print(a)
print()
idx = np.array([0, 0, 2])
#means "select the rows of x indexed by idx and all columns (: means all columns)."
a = x[idx, :]
print(a)
print()
#means "select all rows (:) and the columns of x indexed by idx."
a = x[ :,idx]
print(a)
print()
idx = np.array([0,2]) # rows
jdx = np.array([1,3]) # columns
a = x[idx, :][:,jdx]
print(a)
print()
#_ix allows you to create a 2D array by selecting all combinations of rows in idx and columns in jdx
a = x[np.ix_(idx, jdx)] # generates two 2D arrays that can be used to index the original array x:
print(a)
print()
xMask = x > 5
print(xMask)
print()
a = x[xMask]
print(a)
print()
z = np.array([1,0,1], dtype= np.bool_)
print(z)
a = x[z] # z = [True, False, True] -> x[z] = first row and second row
print(a)
x = np.zeros(6)
print(x)
x[::2] = 3
print(x)
x[np.array([True, False, True, True, True, False],dtype=np.bool_)] = np.arange(4)
# [0,2,3,4] = [1,2,3,4]
print(x)
# copy of the data
x = np.arange(6)
a = x.flags.owndata
print(a)
# view of the data
a = x[:3]
print(a.flags.owndata)
#Array m is broadcasted to a shape (1, 4), and then replicated along axis 0
x = np.zeros((3,4))
print(x)
print()
m = np.arange(4)
print(m)
print()
a = x + m
print(a)
# Array m already has the same number of dimensions as x, and gets replicated along axis 0
x = np.zeros((3,4))
print(x)
print()
m = np.arange(4).reshape((1,4))
print(m)
print()
a = x + m
print(a)
#Array m already has the same number of dimensions as x, and gets replicated along axis 1
x = np.zeros((3,4))
print(x)
print()
m = np.arange(3).reshape((3,1))
print(m)
print()
a = x + m
print(a)
# linear algebra functions
# compute the eigenvalue decomposition of a 2-D array
x = np.arange(9).reshape(3,3)
a = np.linalg.eig(x)
print(a)
x = np.array([99,1,109,-1])
print(x)
print()
a = np.argsort(x) # index of the sorted array
print(a)
print()
a = np.sort(x)
print(a)
print()
x = np.array([99,2,109,-1])
print(x[x>100])
print(x[(x>100) | (x < 0)])
print(x[(x % 2) == 0 ])
x = np.array([99,2,109,-1])
print(x)
a = np.flip(x)
print(a)
x = np.array([[1,2,3],[4,5,6]])
print(x)
print()
a = np.flip(x)
print(a)
print()
a1 = np.flip(x, axis=0) #column
print(a1)
print()
a2 = np.flip(x, axis=1) #row
print(a2)
print()
#save array in a file
#np.save('filename' , array)
#load file
#np.load('filename.py')