diff --git a/rDNA/rDNA/R/dna_network.R b/rDNA/rDNA/R/dna_network.R index 2fbfeac0..b0faab57 100644 --- a/rDNA/rDNA/R/dna_network.R +++ b/rDNA/rDNA/R/dna_network.R @@ -254,13 +254,13 @@ dna_network <- function(networkType = "twomode", invertTypes = FALSE, fileFormat = NULL, outfile = NULL) { - + # wrap the vectors of exclude values for document variables into Java arrays excludeAuthors <- .jarray(excludeAuthors) excludeSources <- .jarray(excludeSources) excludeSections <- .jarray(excludeSections) excludeTypes <- .jarray(excludeTypes) - + # compile exclude variables and values vectors dat <- matrix("", nrow = length(unlist(excludeValues)), ncol = 2) count <- 0 @@ -282,7 +282,7 @@ dna_network <- function(networkType = "twomode", } var <- .jarray(var) # array of variable names of each excluded value val <- .jarray(val) # array of values to be excluded - + # encode R NULL as Java null value if necessary if (is.null(qualifier) || is.na(qualifier)) { qualifier <- .jnull(class = "java/lang/String") @@ -293,7 +293,7 @@ dna_network <- function(networkType = "twomode", if (is.null(outfile)) { outfile <- .jnull(class = "java/lang/String") } - + # call rNetwork function to compute results .jcall(dna_getHeadlessDna(), "V", @@ -331,9 +331,9 @@ dna_network <- function(networkType = "twomode", outfile, fileFormat ) - + exporter <- .jcall(dna_getHeadlessDna(), "Lexport/Exporter;", "getExporter") # get a reference to the Exporter object, in which results are stored - + if (networkType == "eventlist") { # assemble an event list in the form of a data frame of filtered statements f <- J(exporter, "getFilteredStatements", simplify = TRUE) # array list of filtered export statements; use J because array list return type not recognized using .jcall l <- list() # create a list for filtered statements, later to be converted to data frame, with one row per statement @@ -786,34 +786,34 @@ autoplot.dna_network_onemode <- function(object, max_overlaps = 10, seed = 12345) { set.seed(seed) - + if (!grepl("dna_network", class(object)[1])) { stop("Invalid data object. Please compute a dna_network object with the ", "dna_network() function before plotting.") } - + if (!requireNamespace("igraph", quietly = TRUE)) { stop("The autoplot function requires the 'igraph' package to be installed.\n", "To do this, enter 'install.packages(\"igraph\")'.") } - + if (!requireNamespace("ggraph", quietly = TRUE)) { stop("The autoplot function requires the 'ggraph' package to be installed.\n", "To do this, enter 'install.packages(\"ggraph\")'.") } - + if (!is.null(atts) & !"dna_attributes" %in% class(atts)) { stop("Object provided in 'atts' is not a dna_attributes object. Please ", "provide a dna_attributes object using dna_getAttributes() or set atts ", "to NULL if you do not want to use DNA attributes.") } - + if (!is.numeric(truncate)) { truncate <- Inf warning("No numeric value provided for trimming of entities. Truncation ", "will be ignored.") } - + # Convert network matrix to igraph network if ("dna_network_onemode" %in% class(object)) { graph <- igraph::graph_from_adjacency_matrix(object, @@ -830,19 +830,19 @@ autoplot.dna_network_onemode <- function(object, add.names = NULL) igraph::V(graph)$shape <- ifelse(igraph::V(graph)$type, "square", "circle") } - + # Check if all entities are included in attributes object (if provided) if (!is.null(atts) & !(all(igraph::V(graph)$name %in% atts$value))) { miss <- which(!igraph::V(graph)$name %in% atts$value) stop("Some network entities are missing in the attributes object:\n", paste(igraph::V(graph)$name[miss], collapse = "\n")) } - + # Remove tie weights below threshold if (!is.null(threshold)) { graph <- igraph::delete_edges(graph, which(!igraph::E(graph)$weight >= threshold)) } - + # Add node colors if (is.character(node_colors)) { if (!is.null(atts) & length(node_colors) == 1 && node_colors %in% colnames(atts)) { @@ -856,7 +856,7 @@ autoplot.dna_network_onemode <- function(object, } else { igraph::V(graph)$color <- "black" } - + # Add edge colors if (is.null(edge_color)) { if ("combine" %in% as.character(attributes(object)$call)) { @@ -886,7 +886,7 @@ autoplot.dna_network_onemode <- function(object, } else { igraph::E(graph)$color <- "gray" } - + # Add node size(s) if (length(node_size) > 1 & length(node_size) != igraph::vcount(graph)) { igraph::V(graph)$size <- 7 @@ -898,7 +898,7 @@ autoplot.dna_network_onemode <- function(object, } else if (is.numeric(node_size)) { igraph::V(graph)$size <- node_size } - + # Add labels if (!is.logical(node_label)) { if (is.character(node_label) & length(node_label) == 1 & !is.null(atts) && node_label %in% colnames(atts)) { @@ -911,32 +911,32 @@ autoplot.dna_network_onemode <- function(object, igraph::V(graph)$name <- node_label } } - + # Remove isolates if (exclude_isolates) { graph <- igraph::delete_vertices(graph, igraph::degree(graph) == 0) } - + # Only plot giant component of network. Useful for some plotting algorithms. if (giant_component) { # Get giant component components <- igraph::clusters(graph) biggest_cluster_id <- which.max(components$csize) - + # Get members of giant component vert_ids <- igraph::V(graph)[components$membership == biggest_cluster_id] - + # Create subgraph graph <- igraph::induced_subgraph(graph, vert_ids) } - - + + # Truncate labels of entities igraph::V(graph)$name <- sapply(igraph::V(graph)$name, function(e) if (nchar(e) > truncate) paste0(substr(e, 1, truncate - 1), "*") else e) - + # Use absolute edge weight values for plotting igraph::E(graph)$weight <- abs(igraph::E(graph)$weight) - + # Start network plot g <- ggraph::ggraph(graph, layout = layout, ...) + suppressWarnings(ggraph::geom_edge_link(ggplot2::aes(edge_width = igraph::E(graph)$weight, edge_colour = igraph::E(graph)$color), @@ -955,13 +955,13 @@ autoplot.dna_network_onemode <- function(object, max.overlaps = max_overlaps, show.legend = FALSE) } - + # Add theme and set node colors and edges to identity g <- g + ggraph::theme_graph(base_family = "", base_size = font_size) + ggplot2::scale_color_identity() + ggraph::scale_edge_color_identity() - + return(g) } @@ -1096,7 +1096,6 @@ autoplot.dna_network_twomode <- autoplot.dna_network_onemode #' #' @author Philip Leifeld #' @family networks -#' @importFrom rlang .data #' @export dna_tidygraph <- function(network, attributes = NULL, ...) { if (length(intersect(c("dna_network_onemode", "dna_network_twomode", "matrix"), class(network))) < 1) { @@ -1109,7 +1108,7 @@ dna_tidygraph <- function(network, attributes = NULL, ...) { stop("The 'dna_tidygraph' function requires the 'tidygraph' package (>= 1.3.1) to be installed.\n", "To do this, enter 'install.packages(\"tidygraph\")'.") } - + if ("dna_network_twomode" %in% class(network)) { nodes <- data.frame(name = c(rownames(network), colnames(network)), type = c(rep(TRUE, nrow(network)), rep(FALSE, ncol(network))), stringsAsFactors = FALSE) edges <- data.frame(from = rep(rownames(network), times = ncol(network)), to = rep(colnames(network), each = nrow(network)), weight = as.vector(network)) @@ -1122,18 +1121,18 @@ dna_tidygraph <- function(network, attributes = NULL, ...) { } else { stop("Argument supplied by argument 'network' not recognized.") } - + if (!is.null(attributes)) { nodes <- tidygraph::as_tibble(g, active = "nodes")$name # extract nodes from graph for matching at <- attributes[attributes$value %in% nodes, ] # retain only those attributes present in the network at <- at[match(nodes, at$value), ] # sort attributes in the same order as the nodes in the graph g <- tidygraph::mutate(g, at[, colnames(at) != "value"]) # embed node attributes in graph } - + edges <- tidygraph::as_tibble(g, active = "edges") # extract edges from graph u <- unique(edges$weight) # unique edge weights combined <- length(u) < 5 && any(grepl("combine", attributes(network)$call)) # combined qualifier aggregation? - edgecol <- sapply(edges$weight, function(weight) { # create edge colors + edges$edgecol <- sapply(edges$weight, function(weight) { # create edge colors if (length(u) == 2 & all(sort(u) %in% 0:1) & weight > 0) { # binary: 1 = gray "gray" } else if (combined) { # "combined" qualifier aggregation @@ -1158,9 +1157,9 @@ dna_tidygraph <- function(network, attributes = NULL, ...) { }) g <- g |> # assign absolute values, edge colors, and sign as edge attributes tidygraph::activate(edges) |> - tidygraph::mutate(abs = abs(.data$weight), - color = .data$edgecol, - sign = ifelse(.data$weight < 0, "negative", "positive")) - + tidygraph::mutate(abs = abs(edges$weight), + color = edges$edgecol, + sign = ifelse(edges$weight < 0, "negative", "positive")) + return(g) } \ No newline at end of file