forked from mlflow/mlflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
78 lines (72 loc) · 2.27 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import imp
import os
from setuptools import setup, find_packages
version = imp.load_source(
'mlflow.version', os.path.join('mlflow', 'version.py')).VERSION
# Get a list of all files in the JS directory to include in our module
def package_files(directory):
paths = []
for (path, _, filenames) in os.walk(directory):
for filename in filenames:
paths.append(os.path.join('..', path, filename))
return paths
# Prints out a set of paths (relative to the mlflow/ directory) of files in mlflow/server/js/build
# to include in the wheel, e.g. "../mlflow/server/js/build/index.html"
js_files = package_files('mlflow/server/js/build')
sagmaker_server_files = package_files("mlflow/sagemaker/container")
alembic_files = ["../mlflow/alembic.ini"]
setup(
name='mlflow',
version=version,
packages=find_packages(exclude=['tests', 'tests.*']),
package_data={"mlflow": js_files + sagmaker_server_files + alembic_files},
install_requires=[
'alembic',
'click>=7.0',
'cloudpickle',
'databricks-cli>=0.8.0',
'requests>=2.17.3',
'six>=1.10.0',
'gunicorn',
'Flask',
'numpy',
'pandas',
'python-dateutil',
'protobuf>=3.6.0',
'gitpython>=2.1.0',
'pyyaml',
'querystring_parser',
'simplejson',
'docker>=3.6.0',
'entrypoints',
'sqlparse',
'sqlalchemy',
],
extras_require={
'extras':[
"scikit-learn; python_version >= '3.5'",
# scikit-learn 0.20 is the last version to support Python 2.x & Python 3.4.
"scikit-learn==0.20; python_version < '3.5'",
'boto3>=1.7.12',
'mleap>=0.8.1',
'azure-storage',
'google-cloud-storage',
],
},
entry_points='''
[console_scripts]
mlflow=mlflow.cli:cli
''',
zip_safe=False,
author='Databricks',
description='MLflow: An ML Workflow Tool',
long_description=open('README.rst').read(),
license='Apache License 2.0',
classifiers=[
'Intended Audience :: Developers',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3.6',
],
keywords='ml ai databricks',
url='https://mlflow.org/'
)