forked from shihchengyen/r2auto_nav
-
Notifications
You must be signed in to change notification settings - Fork 0
/
r2occupancy2.py
179 lines (152 loc) · 6.51 KB
/
r2occupancy2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright 2016 Open Source Robotics Foundation, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import rclpy
from rclpy.node import Node
from rclpy.qos import qos_profile_sensor_data
from nav_msgs.msg import OccupancyGrid
import tf2_ros
from tf2_ros import LookupException, ConnectivityException, ExtrapolationException
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import math
import scipy.stats
# constants
occ_bins = [-1, 0, 50, 100]
map_bg_color = 1
# code from https://automaticaddison.com/how-to-convert-a-quaternion-into-euler-angles-in-python/
def euler_from_quaternion(x, y, z, w):
"""
Convert a quaternion into euler angles (roll, pitch, yaw)
roll is rotation around x in radians (counterclockwise)
pitch is rotation around y in radians (counterclockwise)
yaw is rotation around z in radians (counterclockwise)
"""
t0 = +2.0 * (w * x + y * z)
t1 = +1.0 - 2.0 * (x * x + y * y)
roll_x = math.atan2(t0, t1)
t2 = +2.0 * (w * y - z * x)
t2 = +1.0 if t2 > +1.0 else t2
t2 = -1.0 if t2 < -1.0 else t2
pitch_y = math.asin(t2)
t3 = +2.0 * (w * z + x * y)
t4 = +1.0 - 2.0 * (y * y + z * z)
yaw_z = math.atan2(t3, t4)
return roll_x, pitch_y, yaw_z # in radians
class Occupy(Node):
def __init__(self):
super().__init__('occupy')
self.subscription = self.create_subscription(
OccupancyGrid,
'map',
self.listener_callback,
qos_profile_sensor_data)
self.subscription # prevent unused variable warning
self.tfBuffer = tf2_ros.Buffer()
self.tfListener = tf2_ros.TransformListener(self.tfBuffer, self)
def listener_callback(self, msg):
# create numpy array
occdata = np.array(msg.data)
# compute histogram to identify bins with -1, values between 0 and below 50,
# and values between 50 and 100. The binned_statistic function will also
# return the bin numbers so we can use that easily to create the image
occ_counts, edges, binnum = scipy.stats.binned_statistic(occdata, np.nan, statistic='count', bins=occ_bins)
# get width and height of map
iwidth = msg.info.width
iheight = msg.info.height
# calculate total number of bins
total_bins = iwidth * iheight
# log the info
# self.get_logger().info('Unmapped: %i Unoccupied: %i Occupied: %i Total: %i' % (occ_counts[0], occ_counts[1], occ_counts[2], total_bins))
# find transform to obtain base_link coordinates in the map frame
# lookup_transform(target_frame, source_frame, time)
try:
trans = self.tfBuffer.lookup_transform('map', 'base_link', rclpy.time.Time())
except (LookupException, ConnectivityException, ExtrapolationException) as e:
self.get_logger().info('No transformation found')
return
cur_pos = trans.transform.translation
cur_rot = trans.transform.rotation
# self.get_logger().info('Trans: %f, %f' % (cur_pos.x, cur_pos.y))
# convert quaternion to Euler angles
roll, pitch, yaw = euler_from_quaternion(cur_rot.x, cur_rot.y, cur_rot.z, cur_rot.w)
# self.get_logger().info('Rot-Yaw: R: %f D: %f' % (yaw, np.degrees(yaw)))
# get map resolution
map_res = msg.info.resolution
# get map origin struct has fields of x, y, and z
map_origin = msg.info.origin.position
# get map grid positions for x, y position
grid_x = round((cur_pos.x - map_origin.x) / map_res)
grid_y = round(((cur_pos.y - map_origin.y) / map_res))
# self.get_logger().info('Grid Y: %i Grid X: %i' % (grid_y, grid_x))
# binnum go from 1 to 3 so we can use uint8
# convert into 2D array using column order
odata = np.uint8(binnum.reshape(msg.info.height,msg.info.width))
# set current robot location to 0
odata[grid_y][grid_x] = 0
# create image from 2D array using PIL
img = Image.fromarray(odata)
# find center of image
i_centerx = iwidth/2
i_centery = iheight/2
# find how much to shift the image to move grid_x and grid_y to center of image
shift_x = round(grid_x - i_centerx)
shift_y = round(grid_y - i_centery)
# self.get_logger().info('Shift Y: %i Shift X: %i' % (shift_y, shift_x))
# pad image to move robot position to the center
# adapted from https://note.nkmk.me/en/python-pillow-add-margin-expand-canvas/
left = 0
right = 0
top = 0
bottom = 0
if shift_x > 0:
# pad right margin
right = 2 * shift_x
else:
# pad left margin
left = 2 * (-shift_x)
if shift_y > 0:
# pad bottom margin
bottom = 2 * shift_y
else:
# pad top margin
top = 2 * (-shift_y)
# create new image
new_width = iwidth + right + left
new_height = iheight + top + bottom
img_transformed = Image.new(img.mode, (new_width, new_height), map_bg_color)
img_transformed.paste(img, (left, top))
# rotate by 90 degrees so that the forward direction is at the top of the image
rotated = img_transformed.rotate(np.degrees(yaw)-90, expand=True, fillcolor=map_bg_color)
# show the image using grayscale map
# plt.imshow(img, cmap='gray', origin='lower')
# plt.imshow(img_transformed, cmap='gray', origin='lower')
plt.imshow(rotated, cmap='gray', origin='lower')
plt.draw_all()
# pause to make sure the plot gets created
plt.pause(0.00000000001)
def main(args=None):
rclpy.init(args=args)
occupy = Occupy()
# create matplotlib figure
plt.ion()
plt.show()
rclpy.spin(occupy)
# Destroy the node explicitly
# (optional - otherwise it will be done automatically
# when the garbage collector destroys the node object)
occupy.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()