forked from cinar/indicator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression.go
108 lines (85 loc) · 2.06 KB
/
regression.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Copyright (c) 2021 Onur Cinar. All Rights Reserved.
// The source code is provided under MIT License.
//
// https://github.com/cinar/indicator
package indicator
import (
"log"
)
// Least square.
//
// y = mx + b
// b = y-intercept
// y = slope
//
// m = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX)
// b = (sumY - m * sumX) / n
func LeastSquare(x, y []float64) (float64, float64) {
checkSameSize(x, y)
var sumX, sumX2, sumY, sumXY float64
for i := 0; i < len(x); i++ {
sumX += x[i]
sumX2 += x[i] * x[i]
sumY += y[i]
sumXY += x[i] * y[i]
}
n := float64(len(x))
m := ((n * sumXY) - (sumX * sumY)) / ((n * sumX2) - (sumX * sumX))
b := (sumY - (m * sumX)) / n
return m, b
}
// Moving least square over a period.
//
// y = mx + b
// b = y-intercept
// y = slope
//
// m = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX)
// b = (sumY - m * sumX) / n
func MovingLeastSquare(period int, x, y []float64) ([]float64, []float64) {
checkSameSize(x, y)
m := make([]float64, len(x))
b := make([]float64, len(x))
var sumX, sumX2, sumY, sumXY float64
for i := 0; i < len(x); i++ {
sumX += x[i]
sumX2 += x[i] * x[i]
sumY += y[i]
sumXY += x[i] * y[i]
n := float64(i + 1)
if i >= period {
sumX -= x[i-period]
sumX2 -= x[i-period] * x[i-period]
sumY -= y[i-period]
sumXY -= x[i-period] * y[i-period]
n = float64(period)
}
m[i] = ((n * sumXY) - (sumX * sumY)) / ((n * sumX2) - (sumX * sumX))
b[i] = (sumY - (m[i] * sumX)) / n
}
return m, b
}
// Linear regression using least square method.
//
// y = mx + b
func LinearRegressionUsingLeastSquare(x, y []float64) []float64 {
m, b := LeastSquare(x, y)
r := make([]float64, len(x))
for i := 0; i < len(r); i++ {
r[i] = (m * x[i]) + b
}
return r
}
// Moving linear regression using least square.
//
// y = mx + b
func MovingLinearRegressionUsingLeastSquare(period int, x, y []float64) []float64 {
m, b := MovingLeastSquare(period, x, y)
r := make([]float64, len(x))
log.Println(m)
log.Println(b)
for i := 0; i < len(r); i++ {
r[i] = (m[i] * x[i]) + b[i]
}
return r
}