-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbeamselect_env.py
78 lines (66 loc) · 3.24 KB
/
beamselect_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
'''
UFPA - LASSE - Telecommunications, Automation and Electronics Research and Development Center - www.lasse.ufpa.br
CAVIAR - Communication Networks and Artificial Intelligence Immersed in Virtual or Augmented Reality
Ailton Oliveira, Felipe Bastos, João Borges, Emerson Oliveira, Daniel Suzuki, Lucas Matni, Rebecca Aben-Athar, Aldebaro Klautau (UFPA): [email protected]
CAVIAR: https://github.com/lasseufpa/ITU-Challenge-ML5G-PHY-RL.git
Enviroment for reinforcement learning applied to Beam-selection
V1.0
'''
import numpy as np
from gym import Env
from gym.spaces import Box, MultiDiscrete
from communications.buffer import Buffer
from communications.base_station import BaseStation
from communications.ue import UE
class BeamSelectionEnv(Env):
def __init__(self, ep=[0]):
# Which episode to take data from (Only used when use_airsim=False).
self.eps = ep
'''
Defining simulation environment with one BS and three UEs
'''
self.ue1 = UE(name='uav1', obj_type='UAV', total_number_rbs=15, episode = self.eps, use_airsim=False)
self.ue2 = UE(name='simulation_car1', obj_type='CAR', total_number_rbs=15, episode = self.eps, use_airsim=False)
self.ue3 = UE(name='simulation_pedestrian1', obj_type='PED', total_number_rbs=15, episode = self.eps, use_airsim=False)
self.caviar_bs = BaseStation(Elements=64, frequency=60e9,name='BS1',ep_lenght=20, traffic_type = 'dense', BS_type = 'UPA', change_type=True)
#Append users
self.caviar_bs.append(self.ue1)
self.caviar_bs.append(self.ue2)
self.caviar_bs.append(self.ue3)
'''
The observation space is composed by an array with 7 float numbers.
The first three represent the user position in XYZ, while the
remaining ones are respectively: dropped packages, sent packages,
buffered and bit rate.
'''
self.observation_space = Box(
low=np.array([-5e2,-5e2,-5e2,0,0,0,0]),
high=np.array([5e2,5e2,5e2,1e3,1e3,2e4,1e9]),
shape=(7,)
)
'''
The action space is composed by an array with two integers. The first one
represents the user that is currently being allocated and the second one,
the codebook index.
'''
self.action_space = MultiDiscrete([len(self.caviar_bs.UEs), self.caviar_bs._NTx])
self.reset()
def reset(self):
self._state = np.zeros(7)
return self._state
'''
The step function receives a user and the beam index to serve it. The user state
is updated at every step by checking the correspondent element inside the simulator.
:param action: (array) is composed by the user ID and the codebook index
'''
def step(self, action):
target, index = action
bs_example_state, bs_example_reward, info, done = self.caviar_bs.step(target,index)
self.state = bs_example_state
reward = bs_example_reward
return self.state, reward, done, info
def best_beam_step(self, target):
bs_example_state, bs_example_reward, info, done = self.caviar_bs.best_beam_step(target)
self.state = bs_example_state
reward = bs_example_reward
return self.state, reward, done, info