diff --git a/docs/docs/integrations/vectorstores/oceanbase.ipynb b/docs/docs/integrations/vectorstores/oceanbase.ipynb index a5ccb896d0797..ca12d2d81a4f4 100644 --- a/docs/docs/integrations/vectorstores/oceanbase.ipynb +++ b/docs/docs/integrations/vectorstores/oceanbase.ipynb @@ -15,7 +15,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Initialization\n", + "## Setup\n", "\n", "First donwload the partner package:" ] @@ -68,7 +68,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Instantiation\n", + "## Initialization\n", "\n", "Configure the API key of the embedded model. Here we use `DashScopeEmbeddings` as an example. When deploying `Oceanbase` with a Docker image as described above, simply follow the script below to set the `host`, `port`, `user`, `password`, and `database name`. For other deployment methods, set these parameters according to the actual situation." ] @@ -207,7 +207,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Query from OceanBase\n", + "## Query vector store\n", "\n", "Note that `OceanBase` currently only supports two vector distance functions: Euclidean distance (`l2`) and inner product distance (`ip`), and uses Euclidean distance by default." ] @@ -356,7 +356,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Using as a Retriever\n", + "### Query by turning into retriever\n", "\n", "You can transform `OceanBase` vector store into a retriever for broader functionality in LangChain." ] @@ -392,6 +392,28 @@ " print(\"-\" * 80)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Usage for retrieval-augmented generation\n", + "\n", + "For guides on how to use this vector store for retrieval-augmented generation (RAG), see the following sections:\n", + "\n", + "- [Tutorials: working with external knowledge](https://python.langchain.com/docs/tutorials/#working-with-external-knowledge)\n", + "- [How-to: Question and answer with RAG](https://python.langchain.com/docs/how_to/#qa-with-rag)\n", + "- [Retrieval conceptual docs](https://python.langchain.com/docs/concepts/retrieval)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## API reference\n", + "\n", + "TODO" + ] + }, { "cell_type": "markdown", "metadata": {},