-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstdlib.gdl
63 lines (49 loc) · 1.88 KB
/
stdlib.gdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#######################################
# #
# GödelT "Standard Library" #
# #
# By Jonas Betzendahl, 2016 #
# @jbetzend #
# #
#######################################
# Identity on natural numbers
id-Nat : (ℕ → ℕ)
id-Nat = λ(a : ℕ).a
# Addition on natural numbers
add : (ℕ → (ℕ → ℕ))
add = λ(a : ℕ).λ(b : ℕ).rec b { Z ~> a | S(c) with d ~> S(d) }
# Multiplication in natural numbers
mult : (ℕ → (ℕ → ℕ))
mult = λ(a : ℕ).λ(b : ℕ).rec a { Z ~> 0 | S(c) with d ~> ((_add_[b])[d]) }
# Factorial on natural numbers
factorial : (ℕ → ℕ)
factorial = λ(a : ℕ).rec a { Z ~> S(0) | S(b) with c ~> ((_mult_[S(b)])[c]) }
# Doubling of natural numbers
double : (ℕ → ℕ)
double = λ(a : ℕ).rec a { Z ~> Z | S(b) with c ~> S(S(c)) }
# Function composition for nat -> nat
circ : ((ℕ → ℕ) → ((ℕ → ℕ) → (ℕ → ℕ)))
circ = λ(f : (ℕ → ℕ)).λ(g : (ℕ → ℕ)).λ(x : ℕ).(f[(g[x])])
# Repeated function application
it : ((ℕ → ℕ) → (ℕ → (ℕ → ℕ)))
it = λ(f : (ℕ → ℕ)).λ(n : ℕ).rec n { Z ~> _id-Nat_ | S(x) with g ~> ((_circ_[f])[g]) }
# BOOLEANS
# Identity on natural numbers
id-Bool : (𝟚 → 𝟚)
id-Bool = λ(a : 𝟚).a
# Negation
not : (𝟚 → 𝟚)
not = λ(a : 𝟚).if a then ff else tt
# Conjunction
and : (𝟚 → (𝟚 → 𝟚))
and = λ(a : 𝟚).λ(b : 𝟚).if a then if b then tt else ff else ff
# Disjunction
or : (𝟚 → (𝟚 → 𝟚))
or = λ(a : 𝟚).λ(b : 𝟚).if a then tt else if b then tt else ff
# NOR
nor : (𝟚 → (𝟚 → 𝟚))
nor = λ(a : 𝟚).λ(b : 𝟚).(_not_[((_or_[a])[b])])
# NAND
nand : (𝟚 → (𝟚 → 𝟚))
nand = λ(a : 𝟚).λ(b : 𝟚).(_not_[((_and_[a])[b])])